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Abstract

This paper presents a classification-based Vi-
sual Question Answering (VQA) system for the
Hausa language, integrating Large Language
Models (LLMs) and vision transformers. By
fine-tuning LLMs on monolingual Hausa text
and fusing their representations with those of
state-of-the-art vision encoders, our system pre-
dicts answers from a fixed vocabulary. Exper-
iments conducted on the HaVQA dataset, un-
der offline text-image augmentation regimes,
tailored to the specificity of Hausa as a low-
resource language, show that this augmentation
strategy yields the best performance over the
baseline, achieving 35.85% accuracy, 35.89%
WuPalmer similarity, and 15.32% F1-score.

1 Introduction

The task of VQA can be approached through three
paradigms: open-ended classification, selecting an
answer from a fixed vocabulary; multiple-choice
(MCQ), choosing from given options; and gener-
ative, producing free-form text responses, some-
times with rationales (Dua et al., 2020). This
study adopts a classification-based approach, fram-
ing VQA as a closed-vocabulary, multi-class task
where the model selects the correct answer from a
predefined label set given an image and a question.

Transformer-based language models such as
BERT (Devlin et al., 2018) have enabled sig-
nificant progress in VQA for high-resource lan-
guages. However, many African languages, in-
cluding Hausa, remain underrepresented due to the
lack of large annotated multimodal corpora (Kumar
et al., 2022; Hedderich et al., 2021), which hinders
the development of VQA systems capable of cap-
turing their linguistic and cultural specificities. To
the best of our knowledge, no previous study has
explored the fine-tuning of Large Language Mod-
els (LLMs) combined with vision transformers for
classification-based VQA in African low-resource
contexts. Furthermore, no prior work has examined
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data augmentation techniques specifically tailored
to VQA systems in African languages.

In this study, we aim to explore the non-
generative potential of LLMs in this setting, fo-
cusing on the Hausa language. We present a
classification-based Hausa VQA system combin-
ing fine-tuned LLMs with state-of-the-art vision
transformers.

Using the HaVQA dataset (Parida et al., 2023b),
we evaluate training paradigms to assess the impact
of text and image data augmentation, focusing on
offline augmentation adapted to Hausa, where data
are expanded before training via text rewriting and
image perturbations, and compare this to a baseline
without augmentation.

Our main contributions are twofold: (i) We con-
duct a comprehensive multimodal benchmark of
nine LLMs and four vision transformers (36 model
variants in total) within a unified fine-tuning frame-
work for Hausa VQA; and (ii) We propose a low-
resource data augmentation and multimodal en-
hancement framework, combining text and image
transformations tailored to Hausa linguistic and
cultural characteristics. This expands the HaVQA
dataset (Parida et al., 2023a) into HaVQA_aug1
and yields measurable improvements in classifica-
tion accuracy, Wu-Palmer similarity, and F1-score
across models.

The rest of the paper is organized as follows:
Section 2 discusses related work; Section 2.4 pro-
vides background on the Hausa language; Section 3
formalizes the VQA task and presents the proposed
methodology;

Section 4 presents our experiments and evalua-
tions; Section 5 discusses the results; and Section 6
concludes the paper with future directions.

1https ://github.com/Alimiji/LLM_QRV_Hausa_
HaVQA_aug
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2 Related Work
2.1 VQA for African Languages

Recent advances in VQA leverage transformer-
based models such as BERT (Devlin et al., 2018)
and Vision Transformer (Dosovitskiy et al., 2020)
to integrate visual and textual information (Tan and
Bansal, 2019; Lu et al., 2019). In Africa, only three
VQA datasets exist: HaVQA for Hausa using non-
large models (Parida et al., 2023a), CVQA cover-
ing multiple African languages except Hausa with
large multimodal models (Romero et al., 2024), and
SwahiliVQA with 10,000 images and 41,448 Q&A
pairs, achieving 38.38% accuracy with non-large
models (MBWANA and Long Hoang, 2025). Data
augmentation improves dataset diversity and model
generalization (Chen et al., 2022; Yang et al., 2022).
Challenges remain, including limited performance
of models like GPT-40 (Olufemi et al., 2025) and
cultural biases highlighted by CulturalVQA and
WorldCuisines (Nayak et al., 2024; Winata et al.).

2.2 LLMs for African Languages

Multilingual LLMs such as mBERT (Devlin et al.,
2018) and XLM-R (Conneau et al., 2020) often
underperform on African languages due to their
scarcity in pretraining corpora (Hedderich et al.,
2021; Blasi et al., 2022). Adaptive fine-tuning
(e.g., MAFT (Alabi et al., 2022)) and from-scratch
models (e.g., AfriBERTa (Ogueji et al., 2021),
AfroLLM (Doe et al., 2023)) improve alignment with
African languages as well as text classification and
question answering (Yu et al., 2025). For Hausa,
challenges include limited datasets, dialectal vari-
ation, and suboptimal tokenization (Muhammad
et al., 2025). Community resources like HausaNLP,
AfroBench (Ojo et al., 2023), and IrokoBench
(Adelani et al., 2025) support NLP development but
highlight persistent performance gaps. Integrating
these language-specific models with vision trans-
formers and culturally-aware data augmentation is
key for effective Hausa VQA.

2.3 Data Augmentation

Recent advances in data augmentation enhance
both text and images. Text techniques include
synonym replacement, EDA (Wei and Zou, 2019),
back-translation (Sennrich et al., 2016), and LLM-
based paraphrasing (Ding et al., 2024), while image
methods use geometric and photometric transfor-
mations, MixUp, and CutOut (Shorten and Khosh-
goftaar, 2019a). In VQA, multimodal augmenta-

tion combines visual perturbations with question
reformulation, QA generation, and adversarial ex-
amples (Chen et al., 2022). Such strategies, in-
tegrated with adapted LLMs, are crucial for im-
proving classification-based VQA in low-resource
African languages like Hausa.

2.4 Hausa Language

Hausa, a Chadic language of the Afroasiatic family,
is spoken by over 200 million people across West
and Central Africa (Muhammad et al., 2025). It
functions as a regional lingua franca and has a rich
literary tradition in both boko (Latin) and ajami
(Arabic-derived) scripts. Despite its cultural signif-
icance, Hausa remains low-resource in NLP, facing
limited datasets, suboptimal tokenization, and di-
alectal variation (Muhammad et al., 2025). Recent
work has advanced text classification, sentiment
analysis, machine translation, NER, and POS tag-
ging, while speech datasets like Common Voice
and multimodal resources such as HaVQA support
VQA research. Pretrained models like AfriBERTa
and the HausaNLP catalog further enhance accessi-
bility and development in these tasks.

3 Proposed Methodology

The Hausa VQA task adapts visual question an-
swering to Hausa, aiming to build models that un-
derstand Hausa questions about images and provide
accurate answers by combining language compre-
hension with visual reasoning (Parida et al., 2023a;
Antol et al., 2015). This work promotes inclusive
Al for speakers of low-resource languages (Nekoto
et al., 2020; Hedderich et al., 2021), with datasets
like HaVQA (Parida et al., 2023a) providing bench-
marks for multilingual and multimodal research.

3.1 System Architecture

Our proposed system consists of a text encoder
(LLM) that converts a Hausa question ¢ into a
dense vector, an image encoder (ViT) producing
patch-level visual embeddings, a fusion layer com-
bining both modalities via concatenation or cross-
modal attention, and a classification head mapping
the fused representation to a global Hausa answer
vocabulary A. Given a question—image pair (g, I),
the model predicts a unique label a’ € A. The an-
swer space A comprises 2,991 gold-standard Hausa
labels, ensuring each input pair maps to exactly one
label.

We adopt a classification-based VQA approach
for Hausa, following HaVQA (Parida et al., 2023b).



This simplifies modeling and enables direct super-
vision with a fixed label set, avoiding the challenges
of free-form answer generation in low-resource lan-
guages.

3.2 Offline vs. No Augmentation

As shown in Figure 1, the baseline (no augmen-
tation) model is fine-tuned solely on the original
HaVQA dataset (Parida et al., 2023a), serving as a
performance reference. In contrast, offline augmen-
tation (Figure 2) expands the dataset by duplicating
images with geometric transformations (e.g., ran-
dom flips and rotations) and paraphrasing English
question—answer pairs using synonym replacement
(Wei and Zou, 2019), which are then translated
into Hausa (Parida et al., 2023a). These augmented
pairs are linked to the transformed images, creat-
ing a larger, fixed dataset. Comparing these two
settings enables systematic evaluation of data aug-
mentation’s impact on classification accuracy, se-
mantic alignment, and robustness in low-resource
scenarios.

4 Experiments and Evaluations

4.1 HaVQA dataset and evaluation setup

We use the HaVQA dataset (Parida et al.,
2023a), which contains 6,022 English-Hausa ques-
tion—answer pairs spanning 2,991 unique Hausa
labels and 1,555 images from Visual Genome (Kr-
ishna et al., 2017). Due to Hausa’s low-resource
nature, we merged the original development and
test sets into a single evaluation set (Kann et al.,
2019) to maximize training data. This practice,
common in low-resource NLP, increases training
robustness while maintaining comprehensive eval-
uation.

4.2 Training details (Hyperparameters)

All models were trained for 10-20 epochs using
HuggingFace’s Trainer (final runs: 17 epochs) with
a fixed seed of 12345. Training and evaluation
used a batch size of 32 per device. We employed
the AdamW with learning_rate = 1 x 107° and
weight_decay = 1 x 10~4. Precision was set to
bfloat16, and evaluation, logging, and checkpoint-
ing occurred every 100 steps, retaining the last
three checkpoints. The best model was selected
based on WUPS. Data loading used 8 workers and
kept all columns. Training was conducted on a
single NVIDIA A100 or L4 GPU.
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Figure 1: Baseline system: Hausa VQA model combining a
large language model (LLM), inspired by Parida et al. (2023b).
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Figure 2: Offline augmentation: Hausa VQA model trained on
pre-augmented data before multimodal fusion (Zhang et al.,
2015; Wei and Zou, 2019; Parida et al., 2023b).

4.3 Metrics meaning

We evaluate Hausa VQA using Accuracy, F1 Score
(Pedregosa et al., 2011), and WuPalmer (WUP)
Similarity (Wu and Palmer, 1994). Accuracy mea-
sures the proportion of correct predictions, while
F1 Score balances precision and recall to account
for class imbalance. WUP similarity, computed
via wup_similarity in NLTK WordNet?, assesses
semantic relatedness between predicted and refer-
ence answers. Together, these metrics provide a
comprehensive evaluation, summarized in Table 1.

4.4 Hausa VQA task models training

Tables 2 and 3 list the nine LL.Ms and four vision
transformers evaluated in our Hausa VQA study.
Pairing each LLM with every vision encoder yields
36 model variants, all trained as multiclass classi-
fiers over a fixed set of Hausa answer labels, with-
out sequence generation. Each question—image pair
from HaVQA (Parida et al., 2023a) is encoded by
the LLM and the vision transformer, with fused
embeddings fed to a classifier. We compare perfor-
mance using offline augmentation on the expanded
dataset versus the baseline with no augmentation.

4.4.1 No Augmentation training

In this setup, the model is trained on the original
HaVQA split: 4,816 training, 1,204 test pairs and
covering 1,555 images in total. Each training in-

2https: //www.nltk.org/api/nltk.corpus.reader.
wordnet.html



Metric Value Range

0-1

Objective
Exact match with
the reference answer

Interpretation
Answer is entirely
correct for high value
Answer is both
precise and complete 0-1

for high value
Answer is semantically
close to the reference 0-1
for high value

Accuracy

Harmonic mean of
F1 Score ..
precision and recall
Semantic similarity

VIAQLP ST ETtyy via WordNet hierarchy

Table 1: Comparison of VQA evaluation metrics. Sources:
(Antol et al., 2015; Rajpurkar et al., 2016; Malinowski and
Fritz, 2014).

LLMs Pretrained on Hausa? Fine-tuned on Hausa? Parameters
mt0-base Yes No 580M
mt0-large Yes No 1.2B
afriberta_large Yes No 126M
afro-xlmr-large Yes No 560M
gemini Yes No 770M
bloomz560 No No 560M
bloomz1b7 No No 1.7B
llama-3.2-1B No No 1.23B
deepseek-R1-1.5B  No No 1.5B

Table 2: Information on Hausa pretraining, fine-tuning, and
the number of parameters of the different LLMs used for the
Hausa VQA system.

stance is a triplet (¢, I, a): a Hausa question g, its
associated image I, and the gold-standard answer
a. The question ¢ is tokenised and embedded us-
ing a large language model (LLM) encoder, while
the image I is patchified and processed by a vi-
sion transformer to obtain visual embeddings. The
answer space A is defined as a fixed set of label
vectors, each encoding a valid Hausa answer. Tex-
tual and visual embeddings are fused, typically via
cross-modal attention, into a unified representation.
A classification head then projects this fused vector
onto the label space, and the top-ranked label is de-
coded into Hausa text as the final prediction. This
baseline serves as the reference configuration to
assess the impact of data augmentation strategies.

4.4.2 Offline Augmentation training

To construct the augmented dataset, each English
question—answer—image triplet (Gen, ien, Gen)
from the HaVQA corpus (Parida et al., 2023a)
is duplicated: the original instance is preserved,
while its copy is transformed. For the textual
components, synonym replacement (Wei and Zou,
2019) is applied exclusively to the duplicated En-
glish questions g.,, by using the WordNet module
of the NLTK library. This produces a parallel
English question—answer set containing both the
original questions and their paraphrased variants,
each paired with the same gold-standard answers.
The resulting English dataset is subsequently
translated into Hausa (Parida et al., 2023a) using
the Translator module from the googletrans library.
For the visual components, only the duplicated

Image Encoder Parameters
vit-base-patch16-224-in21k  86.4M
clip-vit-base-patch32 149M
mae-base 86M
deit-base-patch16-224 86M

Table 3: Number of parameters of the different image en-
coders used for the Hausa VQA system.

Dataset Train Test
HaVQA_aug 9,625 2,407

Total Images
3,110

Table 4: Details of the HaVQA dataset’s offline-augmented
partitions for training and evaluation.

images undergo geometric transformations such
as random horizontal flips and slight rotations
(Shorten and Khoshgoftaar, 2019b).

By combining the original triplets with their
augmented counterparts, we obtain the augmented
dataset HaVQA_aug?, whose size is approxi-
mately twice that of the original HaVQA cor-
pus. Each training instance is represented as
(Qha-augy Z‘ha-omga aha-aug)a where Gha-aug denotes
the paraphrased and translated Hausa question,
tha-aug the transformed image, and ajq-qug the cor-
responding Hausa answer.

The training architecture mirrors the baseline
setup: the question is encoded by an LLM, the aug-
mented image is processed by a vision transformer,
and the fused multimodal representation is classi-
fied into a fixed set of Hausa answer categories.
The offline approach enriches both text and image
modalities prior to training.

5 Results and Discussion

The best Accuracy and WuPalmer scores achieved
by each LLM under these regimes are presented in
Tables 5 and 6.

Under the no-augmentation baseline, llama-3.2-
1B + clip-vit-base-patch32 achieves 19.68% Accu-
racy and WUP, with the highest F1 among all pairs
(Table 5). This remains below the 30.86% WUP
reported for DeiT-Base-P-224 + BERT-Base-Hausa
(Parida et al., 2023a). Notably, llama-3.2-1B per-
forms robustly across all image encoders despite
lacking Hausa-specific pretraining. With offline
augmentation, most LLM-image pairs show larger
gains, particularly for Hausa-pretrained LLMs.
Gemini + vit-base-patch16-224-in21k reaches Wu-

3https ://github.com/Alimiji/LLM_QRV_Hausa_
HaVQA_aug



LLMs Image Encoder WuPalmer Accuracy F1

mt0-base deit-base-patch16-224 15.45 15.45 0.35
mt0-large clip-vit-base-patch32 15.61 15.87 1.03
afriberta_large vit-base-patch16-224-n21k  18.27 18.42 1.05
afro-xIm-large-7.6b  vit-base-patch16-224-n21k  15.24 15.32 0.49
gemini vit-base-patch16-224-n21k  35.89 35.85 1.86
bloomz560 deit-base-patch16-224 15.40 15.42 0.34
bloomz1b7 deit-base-patch32 17.62 17.64 0.89
deepseek-R1-1.5B  deit-base-patch32 19.86 19.84 1.73
llama-3.2-1B deit-base-patch32 18.46 18.36 1.36

Table 5: Best Accuracy, WuPalmer, and F1 score per LLM
on HaVQA — baseline configuration.

LLMs Image Encoder WuPalmer Accuracy F1
mt0-base mae-base 32.19 32.16 9.89
mt0-large mae-base 35.30 35.27 13.45
afriberta_large clip-vit-base-patch32 32.74 32.70 7.84
afro-xImr-large-76L  clip-vit-base-patch32 28.45 28.42 4.47
gemini vit-base-patch16-224-in21k  35.89 35.85 15.32
bloomz560 clip-vit-base-patch32 18.01 17.95 1.24
bloomz1b7 vit-base-patch16-224-in21k  18.36 18.36 0.63
deepseek-R1-1.5B clip-vit-base-patch32 21.70 21.69 342
llama-3.2-1B clip-vit-base-patch32 17.99 17.99 3.11
gemini deit-base-patch16-224 33.52 33.49 12.79

Table 6: Best Accuracy, WuPalmer, and F1 score per LLM
on HaVQA — offline augmentation.

Palmer 35.89%, Accuracy 35.85%, and F1 15.32%
(Table 6). mTO-base/large with MAE-Base also
benefits substantially (WuPalmer 32.19/35.30%,
Accuracy 32.16/35.27%, F1 9.89/13.45%). Non-
Hausa-pretrained models such as bloomz and
llama-3.2-1B gain modestly; e.g., llama-3.2-1B
+ clip-vit-base-patch32 shows F1 3.11%, similar
to inline augmentation, indicating that its baseline
robustness persists but improves little under of-
fline augmentation. Overall, offline augmentation
is most effective for Hausa-pretrained backbones.

5.1 Systems Analysis and Limitations

Despite promising results, our Hausa VQA system
has several limitations. First, HaVQA is limited
in size and diversity, and automatically augmented
Hausa texts can introduce noise.bSecond, the sys-
tem handles only static images, lacking richer mul-
timodal inputs (e.g., video, spatial context), and
dialectal or orthographic variation in Hausa is un-
derrepresented, limiting generalization. Model in-
terpretability is also limited, as large models remain
opaque without integrated explainability mecha-
nisms.

Our analysis shows that offline augmentation
benefits Hausa-pretrained LLMs (mTO, AfriB-
ERTa, Afro-XLM-R, Gemini) considerably, while
non-Hausa models (BloomZ, LLaMA, DeepSeek)
gain modestly (Table 6). This suggests improve-
ments stem not merely from increased data volume,
but from linguistically compatible paraphrases ex-
ploited by Hausa-aware tokenizers. However, none
of our models is fine-tuned on Hausa (Table 2),

Image Encoder Text Encoder WuPalmer
BEiT-L-P224 Bert-Hausa 27.76
ViT-B-P224 Bert-Hausa 28.91
ViT-L-P224 Bert-Hausa 29.67
DeiT-B-P224 Bert-Hausa 30.86

Table 7: WuPalmer scores of Bert-Hausa with four visual
encoders on HaVQA (Parida et al., 2023b).

so offline augmentation may act as a proxy for
adaptation, potentially overstating gains. Future
work includes controlled experiments to separate
volume and diversity effects and stricter filtering of
synthetic paraphrases.

6 Conclusion and Future Work

This research presents a classification-based Hausa
VQA system, combining fine-tuned LLMs with
state-of-the-art vision transformers. Experiments
on HaVQA show that offline multimodal augmen-
tation, tailored to Hausa linguistic and cultural fea-
tures, substantially improves performance, achiev-
ing 35.85% Accuracy, 35.89% WuPalmer, and
15.32% Fl1—exceeding prior benchmarks by over
5%. These results highlight the value of language-
specific pretraining and multimodal enrichment in
low-resource VQA. Future work includes extend-
ing HaVQA into a multilingual MT-VQA bench-
mark, improving interpretability via cross-modal at-
tention analysis, and generalizing the framework to
other African languages. We also plan to enhance
deployment through model compression, knowl-
edge distillation, and multimodal extensions to
speech and video. We will also emphasize ethical
alignment, cultural sensitivity, and bias mitigation
to foster inclusive and equitable multimodal Al for
underrepresented languages.

References

David Ifeoluwa Adelani and 1 others. 2025.
IrokoBench: A new benchmark for african languages
in the age of large language models. https:
//aclanthology.org/2025.naacl-1long.139/.

Jesujoba Olabode Alabi, David Ifeoluwa Adelani, Mar-
ius Mosbach, and Dietrich Klakow. 2022. Adapt-
ing pre-trained language models to african languages
via multilingual adaptive fine-tuning. In Findings of
ACL, pages 1-17.

Stanislaw Antol, Arjun Agrawal, Jiasen Lu, Margaret
Mitchell, Dhruv Batra, C. Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.



In Proceedings of the IEEE International Conference
on Computer Vision (ICCV).

Damian Blasi, Antonios Anastasopoulos, and Gra-
ham Neubig. 2022. Systematic inequalities in lan-
guage technology performance across the world’s
languages. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5486-5505, Dublin,
Ireland. Association for Computational Linguistics.

Long Chen, Yuhang Zheng, and Jun Xiao. 2022. Re-
thinking data augmentation for robust visual question
answering. In European Conference on Computer
Vision (ECCV).

Alexis Conneau, Karthik Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Felipe
Guzmin, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of ACL, pages 8440-8451.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Bosheng Ding, Chengwei Qin, Ruochen Zhao, Tianze
Luo, Xinze Li, Guizhen Chen, Wenhan Xia, Junjie
Hu, Luu Anh Tuan, and Shafiq Joty. 2024. Data
augmentation using llms: Data perspectives, learning
paradigms and challenges. In Findings of the Associ-
ation for Computational Linguistics ACL 2024, pages
1679-1705.

John Doe, Alice Smith, and Rahman Mohammed. 2023.
Afrolm: A self-active learning-based multilingual
pretrained language model for 23 african languages.
arXiv preprint.

Alexey Dosovitskiy, Lucas Beyer, Alexander
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias
Minderer, Georg Heigold, Sylvain Gelly, Jakob
Uszkoreit, and Neil Houlsby. 2020. An image is
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel
Stanovsky, Sameer Singh, and Matt Gardner. 2020.
Beyond answering: Towards multi-step reasoning
in machine reading comprehension. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 8849-8863.

Michael A Hedderich, Lukas Lange, Heike Adel, Jannik
Strotgen, and Dietrich Klakow. 2021. A survey on
recent approaches for natural language processing
in low-resource scenarios. Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2545-2568.

Katharina Kann, Kyunghyun Cho, and Samuel R. Bow-
man. 2019. Towards realistic practices in low-
resource natural language processing: The develop-
ment set. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3342-3349, Hong Kong, China. Association for Com-
putational Linguistics.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A. Shamma,
Michael S. Bernstein, and Li Fei-Fei. 2017. Vi-
sual genome: Connecting language and vision using
crowdsourced dense image annotations. In Interna-
tional Journal of Computer Vision (IJCV), volume
123, pages 32-73. Springer.

Raghavendra Kumar, Michael Hedderich, Bonaven-
ture F Dossou, Chris C Emezue, KreSimir gojat,
Heike Adel, and Iryna Gurevych. 2022. Towards
data and benchmarking for african languages. In
Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL), pages
3554-3573.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. Vilbert: Pretraining task-agnostic visiolinguis-
tic representations for vision-and-language tasks. In
Advances in Neural Information Processing Systems
(NeurIPS), volume 32. Curran Associates, Inc.

Mateusz Malinowski and Mario Fritz. 2014. A multi-
world approach to question answering about real-
world scenes based on uncertain input. Advances in
Neural Information Processing Systems, 27.

Francis Stephen MBWANA and Dang Long Hoang.
2025. Swahilivqa: A dataset for visual question
answering in swabhili language. In 2025 Interna-
tional Conference on Multimedia Analysis and Pat-
tern Recognition (MAPR), pages 1-6.

Shamsuddeen Hassan Muhammad, Ibrahim Said Ah-
mad, Idris Abdulmumin, Falalu Ibrahim Lawan,
Sukairaj Hafiz Imam, Yusuf Aliyu, Sani Abdullahi
Sani, Ali Usman Umar, Tajuddeen Gwadabe, Ken-
neth Church, and Vukosi Marivate. 2025. HausaNLP:
Current status, challenges and future directions for
Hausa natural language processing. In Proceedings
of the Sixth Workshop on African Natural Language
Processing (AfricaNLP 2025), pages 176-191, Vi-
enna, Austria. Association for Computational Lin-
guistics.

Shravan Nayak, Kanishk Jain, Rabiul Awal, Siva Reddy,
Sjoerd Van Steenkiste, Lisa Anne Hendricks, Aish-
warya Agrawal, and 1 others. 2024. Benchmarking
vision language models for cultural understanding.
arXiv preprint arXiv:2407.10920.

Wilhelmina Nekoto, Vukosi Marivate, Taiwo Fagbo-
hungbe, and et al. 2020. Participatory research for
low-resourced machine translation: A case study



in african languages. Findings of the Association
for Computational Linguistics: EMNLP 2020, pages
2144-2160.

Kelechi Ogueji, Yuxin Zhu, and Jimmy Lin. 2021.
Small data? no problem! exploring the viability
of pretrained multilingual language models for low-
resourced languages. In Proceedings of the 1st Work-
shop on Multilingual Representation Learning, pages
1-11.

Jessica Ojo, Kelechi Ogueji, Pontus Stenetorp, and
David Ifeoluwa Adelani. 2023. How good are large
language models on african languages?  arXiv
preprint arXiv:2311.07978.

Victor Tolulope Olufemi, Oreoluwa Boluwatife Ba-
batunde, Emmanuel Bolarinwa, and Kausar Yetunde
Moshood. 2025. Challenging multimodal LLMs with
african standardized exams: A document VQA eval-
uation. In CVPR 2025 Workshop Vision Language
Models For All.

Shantipriya Parida, Idris Abdulmumin, Shamsud-
deen H. Muhammad, Aneesh Bose, Guneet S. Kohli,
Ibrahim S. Ahmad, Ketan Kotwal, Sayan D. Sarkar,
Ondrej Bojar, and Habeebah A. Kakudi. 2023a.
Havqa: A dataset for visual question answering and
multimodal research in hausa language. In Find-
ings of the Association for Computational Linguis-
tics: ACL 2023, pages 10162-10183.

Shantipriya Parida, Idris Abdulmumin, Sham-
suddeen Hassan Muhammad, Aneesh Bose,
Guneet Singh Kohli, Ibrahim Said Ahmad, Ketan
Kotwal, Sayan Deb Sarkar, Ondfej Bojar, and
Habeebah Kakudi. 2023b. HaVQA: A dataset for
visual question answering and multimodal research
in Hausa language. In Findings of the Association
for Computational Linguistics: ACL 2023, pages
10162-10183, Toronto, Canada. Association for
Computational Linguistics.

Fabian Pedregosa, Gaél Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Edouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learn-
ing Research, 12(85):2825-2830.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392.

David Romero, Chenyang Lyu, Haryo Akbarianto Wi-
bowo, Teresa Lynn, Injy Hamed, Aditya Nanda
Kishore, Aishik Mandal, Alina Dragonetti, Artem
Abzaliev, Atnafu Lambebo Tonja, Bontu Fufa Balcha,
Chenxi Whitehouse, Christian Salamea, Dan John
Velasco, David Ifeoluwa Adelani, David Le Meur,
Emilio Villa-Cueva, Fajri Koto, Fauzan Farooqui, and

57 others. 2024. Cvqa: Culturally-diverse multilin-
gual visual question answering benchmark. Preprint,
arXiv:2406.05967.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL), pages 1715-1725.

Connor Shorten and Taghi M. Khoshgoftaar. 2019a. A
survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):60.

Connor Shorten and Taghi M. Khoshgoftaar. 2019b. A
survey on image data augmentation for deep learning.
Journal of Big Data, 6(1):60.

Hao Tan and Mohit Bansal. 2019. Lxmert: Learning
cross-modality encoder representations from trans-
formers. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
5100-5111, Hong Kong, China. Association for Com-
putational Linguistics.

Jason Wei and Kai Zou. 2019. Eda: Easy data augmenta-
tion techniques for boosting performance on text clas-
sification tasks. arXiv preprint arXiv:1901.11196.

Genta Indra Winata, Frederikus Hudi, Patrick Amadeus
Irawan, David Anugraha, Rifki Afina Putri, Wang
Yutong, Adam Nohejl, Ubaidillah Ariq Prathama,
Nedjma Ousidhoum, Afifa Amriani, Anar Rzayev,
Anirban Das, Ashmari Pramodya, Aulia Adila, Bryan
Wilie, Candy Olivia Mawalim, Cheng Ching Lam,
Daud Abolade, Emmanuele Chersoni, and 8 others.
WorldCuisines: A massive-scale benchmark for mul-
tilingual and multicultural visual question answering
on global cuisines.

Zhibiao Wu and Martha Palmer. 1994. Verbs semantics
and lexical selection. ACL ’94, page 133138, USA.
Association for Computational Linguistics.

Suorong Yang, Weikang Xiao, Mengchen Zhang, Suhan
Guo, Jian Zhao, and Furao Shen. 2022. Image data
augmentation for deep learning: A survey. arXiv
preprint arXiv:2204.08610.

Hao Yu, Jesujoba Oluwadara Alabi, Andiswa Bukula,
Jian Yun othersZhuang, and 1 others. 2025. IN-
JONGO: A multicultural intent detection and slot-
filling dataset for 16 African languages. In Proceed-
ings of the 63rd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9429-9452, Vienna, Austria. Associa-
tion for Computational Linguistics.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text clas-
sification. In Advances in Neural Information Pro-
cessing Systems (NeurlPS), pages 649-657.



