
Multimodal Classification System for Hausa using LLMs and Vision
Transformers

Ali Mijiyawa1 Fatiha Sadat1

1Université du Québec à Montréal (UQAM), Montreal, QC, Canada

mijiyawa.ali@courrier.uqam.ca | sadat.fatiha@uqam.ca

Abstract001

This paper presents a classification-based Vi-002
sual Question Answering (VQA) system for the003
Hausa language, integrating Large Language004
Models (LLMs) and vision transformers. By005
fine-tuning LLMs on monolingual Hausa text006
and fusing their representations with those of007
state-of-the-art vision encoders, our system pre-008
dicts answers from a fixed vocabulary. Exper-009
iments conducted on the HaVQA dataset, un-010
der offline text–image augmentation regimes,011
tailored to the specificity of Hausa as a low-012
resource language, show that this augmentation013
strategy yields the best performance over the014
baseline, achieving 35.85% accuracy, 35.89%015
WuPalmer similarity, and 15.32% F1-score.016

1 Introduction017

The task of VQA can be approached through three018

paradigms: open-ended classification, selecting an019

answer from a fixed vocabulary; multiple-choice020

(MCQ), choosing from given options; and gener-021

ative, producing free-form text responses, some-022

times with rationales (Dua et al., 2020). This023

study adopts a classification-based approach, fram-024

ing VQA as a closed-vocabulary, multi-class task025

where the model selects the correct answer from a026

predefined label set given an image and a question.027

Transformer-based language models such as028

BERT (Devlin et al., 2018) have enabled sig-029

nificant progress in VQA for high-resource lan-030

guages. However, many African languages, in-031

cluding Hausa, remain underrepresented due to the032

lack of large annotated multimodal corpora (Kumar033

et al., 2022; Hedderich et al., 2021), which hinders034

the development of VQA systems capable of cap-035

turing their linguistic and cultural specificities. To036

the best of our knowledge, no previous study has037

explored the fine-tuning of Large Language Mod-038

els (LLMs) combined with vision transformers for039

classification-based VQA in African low-resource040

contexts. Furthermore, no prior work has examined041

data augmentation techniques specifically tailored 042

to VQA systems in African languages. 043

In this study, we aim to explore the non- 044

generative potential of LLMs in this setting, fo- 045

cusing on the Hausa language. We present a 046

classification-based Hausa VQA system combin- 047

ing fine-tuned LLMs with state-of-the-art vision 048

transformers. 049

Using the HaVQA dataset (Parida et al., 2023b), 050

we evaluate training paradigms to assess the impact 051

of text and image data augmentation, focusing on 052

offline augmentation adapted to Hausa, where data 053

are expanded before training via text rewriting and 054

image perturbations, and compare this to a baseline 055

without augmentation. 056

Our main contributions are twofold: (i) We con- 057

duct a comprehensive multimodal benchmark of 058

nine LLMs and four vision transformers (36 model 059

variants in total) within a unified fine-tuning frame- 060

work for Hausa VQA; and (ii) We propose a low- 061

resource data augmentation and multimodal en- 062

hancement framework, combining text and image 063

transformations tailored to Hausa linguistic and 064

cultural characteristics. This expands the HaVQA 065

dataset (Parida et al., 2023a) into HaVQA_aug1 066

and yields measurable improvements in classifica- 067

tion accuracy, Wu-Palmer similarity, and F1-score 068

across models. 069

The rest of the paper is organized as follows: 070

Section 2 discusses related work; Section 2.4 pro- 071

vides background on the Hausa language; Section 3 072

formalizes the VQA task and presents the proposed 073

methodology; 074

Section 4 presents our experiments and evalua- 075

tions; Section 5 discusses the results; and Section 6 076

concludes the paper with future directions. 077

1https://github.com/Alimiji/LLM_QRV_Hausa_
HaVQA_aug
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2 Related Work078

2.1 VQA for African Languages079

Recent advances in VQA leverage transformer-080

based models such as BERT (Devlin et al., 2018)081

and Vision Transformer (Dosovitskiy et al., 2020)082

to integrate visual and textual information (Tan and083

Bansal, 2019; Lu et al., 2019). In Africa, only three084

VQA datasets exist: HaVQA for Hausa using non-085

large models (Parida et al., 2023a), CVQA cover-086

ing multiple African languages except Hausa with087

large multimodal models (Romero et al., 2024), and088

SwahiliVQA with 10,000 images and 41,448 Q&A089

pairs, achieving 38.38% accuracy with non-large090

models (MBWANA and Long Hoang, 2025). Data091

augmentation improves dataset diversity and model092

generalization (Chen et al., 2022; Yang et al., 2022).093

Challenges remain, including limited performance094

of models like GPT-4o (Olufemi et al., 2025) and095

cultural biases highlighted by CulturalVQA and096

WorldCuisines (Nayak et al., 2024; Winata et al.).097

2.2 LLMs for African Languages098

Multilingual LLMs such as mBERT (Devlin et al.,099

2018) and XLM-R (Conneau et al., 2020) often100

underperform on African languages due to their101

scarcity in pretraining corpora (Hedderich et al.,102

2021; Blasi et al., 2022). Adaptive fine-tuning103

(e.g., MAFT (Alabi et al., 2022)) and from-scratch104

models (e.g., AfriBERTa (Ogueji et al., 2021),105

AfroLM (Doe et al., 2023)) improve alignment with106

African languages as well as text classification and107

question answering (Yu et al., 2025). For Hausa,108

challenges include limited datasets, dialectal vari-109

ation, and suboptimal tokenization (Muhammad110

et al., 2025). Community resources like HausaNLP,111

AfroBench (Ojo et al., 2023), and IrokoBench112

(Adelani et al., 2025) support NLP development but113

highlight persistent performance gaps. Integrating114

these language-specific models with vision trans-115

formers and culturally-aware data augmentation is116

key for effective Hausa VQA.117

2.3 Data Augmentation118

Recent advances in data augmentation enhance119

both text and images. Text techniques include120

synonym replacement, EDA (Wei and Zou, 2019),121

back-translation (Sennrich et al., 2016), and LLM-122

based paraphrasing (Ding et al., 2024), while image123

methods use geometric and photometric transfor-124

mations, MixUp, and CutOut (Shorten and Khosh-125

goftaar, 2019a). In VQA, multimodal augmenta-126

tion combines visual perturbations with question 127

reformulation, QA generation, and adversarial ex- 128

amples (Chen et al., 2022). Such strategies, in- 129

tegrated with adapted LLMs, are crucial for im- 130

proving classification-based VQA in low-resource 131

African languages like Hausa. 132

2.4 Hausa Language 133

Hausa, a Chadic language of the Afroasiatic family, 134

is spoken by over 200 million people across West 135

and Central Africa (Muhammad et al., 2025). It 136

functions as a regional lingua franca and has a rich 137

literary tradition in both boko (Latin) and ajami 138

(Arabic-derived) scripts. Despite its cultural signif- 139

icance, Hausa remains low-resource in NLP, facing 140

limited datasets, suboptimal tokenization, and di- 141

alectal variation (Muhammad et al., 2025). Recent 142

work has advanced text classification, sentiment 143

analysis, machine translation, NER, and POS tag- 144

ging, while speech datasets like Common Voice 145

and multimodal resources such as HaVQA support 146

VQA research. Pretrained models like AfriBERTa 147

and the HausaNLP catalog further enhance accessi- 148

bility and development in these tasks. 149

3 Proposed Methodology 150

The Hausa VQA task adapts visual question an- 151

swering to Hausa, aiming to build models that un- 152

derstand Hausa questions about images and provide 153

accurate answers by combining language compre- 154

hension with visual reasoning (Parida et al., 2023a; 155

Antol et al., 2015). This work promotes inclusive 156

AI for speakers of low-resource languages (Nekoto 157

et al., 2020; Hedderich et al., 2021), with datasets 158

like HaVQA (Parida et al., 2023a) providing bench- 159

marks for multilingual and multimodal research. 160

3.1 System Architecture 161

Our proposed system consists of a text encoder 162

(LLM) that converts a Hausa question q into a 163

dense vector, an image encoder (ViT) producing 164

patch-level visual embeddings, a fusion layer com- 165

bining both modalities via concatenation or cross- 166

modal attention, and a classification head mapping 167

the fused representation to a global Hausa answer 168

vocabulary A. Given a question–image pair (q, I), 169

the model predicts a unique label a′ ∈ A. The an- 170

swer space A comprises 2,991 gold-standard Hausa 171

labels, ensuring each input pair maps to exactly one 172

label. 173

We adopt a classification-based VQA approach 174

for Hausa, following HaVQA (Parida et al., 2023b). 175



This simplifies modeling and enables direct super-176

vision with a fixed label set, avoiding the challenges177

of free-form answer generation in low-resource lan-178

guages.179

3.2 Offline vs. No Augmentation180

As shown in Figure 1, the baseline (no augmen-181

tation) model is fine-tuned solely on the original182

HaVQA dataset (Parida et al., 2023a), serving as a183

performance reference. In contrast, offline augmen-184

tation (Figure 2) expands the dataset by duplicating185

images with geometric transformations (e.g., ran-186

dom flips and rotations) and paraphrasing English187

question–answer pairs using synonym replacement188

(Wei and Zou, 2019), which are then translated189

into Hausa (Parida et al., 2023a). These augmented190

pairs are linked to the transformed images, creat-191

ing a larger, fixed dataset. Comparing these two192

settings enables systematic evaluation of data aug-193

mentation’s impact on classification accuracy, se-194

mantic alignment, and robustness in low-resource195

scenarios.196

4 Experiments and Evaluations197

4.1 HaVQA dataset and evaluation setup198

We use the HaVQA dataset (Parida et al.,199

2023a), which contains 6,022 English–Hausa ques-200

tion–answer pairs spanning 2,991 unique Hausa201

labels and 1,555 images from Visual Genome (Kr-202

ishna et al., 2017). Due to Hausa’s low-resource203

nature, we merged the original development and204

test sets into a single evaluation set (Kann et al.,205

2019) to maximize training data. This practice,206

common in low-resource NLP, increases training207

robustness while maintaining comprehensive eval-208

uation.209

4.2 Training details (Hyperparameters)210

All models were trained for 10–20 epochs using211

HuggingFace’s Trainer (final runs: 17 epochs) with212

a fixed seed of 12345. Training and evaluation213

used a batch size of 32 per device. We employed214

the AdamW with learning_rate = 1× 10−5 and215

weight_decay = 1 × 10−4. Precision was set to216

bfloat16, and evaluation, logging, and checkpoint-217

ing occurred every 100 steps, retaining the last218

three checkpoints. The best model was selected219

based on WUPS. Data loading used 8 workers and220

kept all columns. Training was conducted on a221

single NVIDIA A100 or L4 GPU.222

Figure 1: Baseline system: Hausa VQA model combining a
large language model (LLM), inspired by Parida et al. (2023b).

Figure 2: Offline augmentation: Hausa VQA model trained on
pre-augmented data before multimodal fusion (Zhang et al.,
2015; Wei and Zou, 2019; Parida et al., 2023b).

4.3 Metrics meaning 223

We evaluate Hausa VQA using Accuracy, F1 Score 224

(Pedregosa et al., 2011), and WuPalmer (WUP) 225

Similarity (Wu and Palmer, 1994). Accuracy mea- 226

sures the proportion of correct predictions, while 227

F1 Score balances precision and recall to account 228

for class imbalance. WUP similarity, computed 229

via wup_similarity in NLTK WordNet2, assesses 230

semantic relatedness between predicted and refer- 231

ence answers. Together, these metrics provide a 232

comprehensive evaluation, summarized in Table 1. 233

4.4 Hausa VQA task models training 234

Tables 2 and 3 list the nine LLMs and four vision 235

transformers evaluated in our Hausa VQA study. 236

Pairing each LLM with every vision encoder yields 237

36 model variants, all trained as multiclass classi- 238

fiers over a fixed set of Hausa answer labels, with- 239

out sequence generation. Each question–image pair 240

from HaVQA (Parida et al., 2023a) is encoded by 241

the LLM and the vision transformer, with fused 242

embeddings fed to a classifier. We compare perfor- 243

mance using offline augmentation on the expanded 244

dataset versus the baseline with no augmentation. 245

4.4.1 No Augmentation training 246

In this setup, the model is trained on the original 247

HaVQA split: 4,816 training, 1,204 test pairs and 248

covering 1,555 images in total. Each training in- 249

2https://www.nltk.org/api/nltk.corpus.reader.
wordnet.html



Metric Objective Interpretation Value Range

Accuracy
Exact match with

the reference answer
Answer is entirely

correct for high value
0–1

F1 Score
Harmonic mean of
precision and recall

Answer is both
precise and complete

for high value
0–1

WUP Similarity
Semantic similarity

via WordNet hierarchy

Answer is semantically
close to the reference

for high value
0–1

Table 1: Comparison of VQA evaluation metrics. Sources:
(Antol et al., 2015; Rajpurkar et al., 2016; Malinowski and
Fritz, 2014).

LLMs Pretrained on Hausa? Fine-tuned on Hausa? Parameters
mt0-base Yes No 580M
mt0-large Yes No 1.2B
afriberta_large Yes No 126M
afro-xlmr-large Yes No 560M
gemini Yes No 770M
bloomz560 No No 560M
bloomz1b7 No No 1.7B
llama-3.2-1B No No 1.23B
deepseek-R1-1.5B No No 1.5B

Table 2: Information on Hausa pretraining, fine-tuning, and
the number of parameters of the different LLMs used for the
Hausa VQA system.

stance is a triplet (q, I, a): a Hausa question q, its250

associated image I , and the gold-standard answer251

a. The question q is tokenised and embedded us-252

ing a large language model (LLM) encoder, while253

the image I is patchified and processed by a vi-254

sion transformer to obtain visual embeddings. The255

answer space A is defined as a fixed set of label256

vectors, each encoding a valid Hausa answer. Tex-257

tual and visual embeddings are fused, typically via258

cross-modal attention, into a unified representation.259

A classification head then projects this fused vector260

onto the label space, and the top-ranked label is de-261

coded into Hausa text as the final prediction. This262

baseline serves as the reference configuration to263

assess the impact of data augmentation strategies.264

4.4.2 Offline Augmentation training265

To construct the augmented dataset, each English266

question–answer–image triplet (qen, ien, aen)267

from the HaVQA corpus (Parida et al., 2023a)268

is duplicated: the original instance is preserved,269

while its copy is transformed. For the textual270

components, synonym replacement (Wei and Zou,271

2019) is applied exclusively to the duplicated En-272

glish questions qen by using the WordNet module273

of the NLTK library. This produces a parallel274

English question–answer set containing both the275

original questions and their paraphrased variants,276

each paired with the same gold-standard answers.277

The resulting English dataset is subsequently278

translated into Hausa (Parida et al., 2023a) using279

the Translator module from the googletrans library.280

For the visual components, only the duplicated281

Image Encoder Parameters
vit-base-patch16-224-in21k 86.4M
clip-vit-base-patch32 149M
mae-base 86M
deit-base-patch16-224 86M

Table 3: Number of parameters of the different image en-
coders used for the Hausa VQA system.

Dataset Train Test Total Images
HaVQA_aug 9,625 2,407 3,110

Table 4: Details of the HaVQA dataset’s offline-augmented
partitions for training and evaluation.

images undergo geometric transformations such 282

as random horizontal flips and slight rotations 283

(Shorten and Khoshgoftaar, 2019b). 284

By combining the original triplets with their 285

augmented counterparts, we obtain the augmented 286

dataset HaVQA_aug3, whose size is approxi- 287

mately twice that of the original HaVQA cor- 288

pus. Each training instance is represented as 289

(qha-aug, iha-aug, aha-aug), where qha-aug denotes 290

the paraphrased and translated Hausa question, 291

iha-aug the transformed image, and aha-aug the cor- 292

responding Hausa answer. 293

The training architecture mirrors the baseline 294

setup: the question is encoded by an LLM, the aug- 295

mented image is processed by a vision transformer, 296

and the fused multimodal representation is classi- 297

fied into a fixed set of Hausa answer categories. 298

The offline approach enriches both text and image 299

modalities prior to training. 300

5 Results and Discussion 301

The best Accuracy and WuPalmer scores achieved 302

by each LLM under these regimes are presented in 303

Tables 5 and 6. 304

Under the no-augmentation baseline, llama-3.2- 305

1B + clip-vit-base-patch32 achieves 19.68% Accu- 306

racy and WUP, with the highest F1 among all pairs 307

(Table 5). This remains below the 30.86% WUP 308

reported for DeiT-Base-P-224 + BERT-Base-Hausa 309

(Parida et al., 2023a). Notably, llama-3.2-1B per- 310

forms robustly across all image encoders despite 311

lacking Hausa-specific pretraining. With offline 312

augmentation, most LLM–image pairs show larger 313

gains, particularly for Hausa-pretrained LLMs. 314

Gemini + vit-base-patch16-224-in21k reaches Wu- 315

3https://github.com/Alimiji/LLM_QRV_Hausa_
HaVQA_aug



LLMs Image Encoder WuPalmer Accuracy F1
mt0-base deit-base-patch16-224 15.45 15.45 0.35
mt0-large clip-vit-base-patch32 15.61 15.87 1.03
afriberta_large vit-base-patch16-224-n21k 18.27 18.42 1.05
afro-xlm-large-7.6b vit-base-patch16-224-n21k 15.24 15.32 0.49
gemini vit-base-patch16-224-n21k 35.89 35.85 1.86
bloomz560 deit-base-patch16-224 15.40 15.42 0.34
bloomz1b7 deit-base-patch32 17.62 17.64 0.89
deepseek-R1-1.5B deit-base-patch32 19.86 19.84 1.73
llama-3.2-1B deit-base-patch32 18.46 18.36 1.36

Table 5: Best Accuracy, WuPalmer, and F1 score per LLM
on HaVQA — baseline configuration.

LLMs Image Encoder WuPalmer Accuracy F1
mt0-base mae-base 32.19 32.16 9.89
mt0-large mae-base 35.30 35.27 13.45
afriberta_large clip-vit-base-patch32 32.74 32.70 7.84
afro-xlmr-large-76L clip-vit-base-patch32 28.45 28.42 4.47
gemini vit-base-patch16-224-in21k 35.89 35.85 15.32
bloomz560 clip-vit-base-patch32 18.01 17.95 1.24
bloomz1b7 vit-base-patch16-224-in21k 18.36 18.36 0.63
deepseek-R1-1.5B clip-vit-base-patch32 21.70 21.69 3.42
llama-3.2-1B clip-vit-base-patch32 17.99 17.99 3.11
gemini deit-base-patch16-224 33.52 33.49 12.79

Table 6: Best Accuracy, WuPalmer, and F1 score per LLM
on HaVQA — offline augmentation.

Palmer 35.89%, Accuracy 35.85%, and F1 15.32%316

(Table 6). mT0-base/large with MAE-Base also317

benefits substantially (WuPalmer 32.19/35.30%,318

Accuracy 32.16/35.27%, F1 9.89/13.45%). Non-319

Hausa-pretrained models such as bloomz and320

llama-3.2-1B gain modestly; e.g., llama-3.2-1B321

+ clip-vit-base-patch32 shows F1 3.11%, similar322

to inline augmentation, indicating that its baseline323

robustness persists but improves little under of-324

fline augmentation. Overall, offline augmentation325

is most effective for Hausa-pretrained backbones.326

5.1 Systems Analysis and Limitations327

Despite promising results, our Hausa VQA system328

has several limitations. First, HaVQA is limited329

in size and diversity, and automatically augmented330

Hausa texts can introduce noise.bSecond, the sys-331

tem handles only static images, lacking richer mul-332

timodal inputs (e.g., video, spatial context), and333

dialectal or orthographic variation in Hausa is un-334

derrepresented, limiting generalization. Model in-335

terpretability is also limited, as large models remain336

opaque without integrated explainability mecha-337

nisms.338

Our analysis shows that offline augmentation339

benefits Hausa-pretrained LLMs (mT0, AfriB-340

ERTa, Afro-XLM-R, Gemini) considerably, while341

non-Hausa models (BloomZ, LLaMA, DeepSeek)342

gain modestly (Table 6). This suggests improve-343

ments stem not merely from increased data volume,344

but from linguistically compatible paraphrases ex-345

ploited by Hausa-aware tokenizers. However, none346

of our models is fine-tuned on Hausa (Table 2),347

Image Encoder Text Encoder WuPalmer
BEiT-L-P224 Bert-Hausa 27.76
ViT-B-P224 Bert-Hausa 28.91
ViT-L-P224 Bert-Hausa 29.67
DeiT-B-P224 Bert-Hausa 30.86

Table 7: WuPalmer scores of Bert-Hausa with four visual
encoders on HaVQA(Parida et al., 2023b).

so offline augmentation may act as a proxy for 348

adaptation, potentially overstating gains. Future 349

work includes controlled experiments to separate 350

volume and diversity effects and stricter filtering of 351

synthetic paraphrases. 352

6 Conclusion and Future Work 353

This research presents a classification-based Hausa 354

VQA system, combining fine-tuned LLMs with 355

state-of-the-art vision transformers. Experiments 356

on HaVQA show that offline multimodal augmen- 357

tation, tailored to Hausa linguistic and cultural fea- 358

tures, substantially improves performance, achiev- 359

ing 35.85% Accuracy, 35.89% WuPalmer, and 360

15.32% F1—exceeding prior benchmarks by over 361

5%. These results highlight the value of language- 362

specific pretraining and multimodal enrichment in 363

low-resource VQA. Future work includes extend- 364

ing HaVQA into a multilingual MT-VQA bench- 365

mark, improving interpretability via cross-modal at- 366

tention analysis, and generalizing the framework to 367

other African languages. We also plan to enhance 368

deployment through model compression, knowl- 369

edge distillation, and multimodal extensions to 370

speech and video. We will also emphasize ethical 371

alignment, cultural sensitivity, and bias mitigation 372

to foster inclusive and equitable multimodal AI for 373

underrepresented languages. 374
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