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Abstract
The complex morphology, conjunctive orthogra-

phy and widespread occurrence of morphophono-

logical alternation in the Nguni languages have

given rise to several efforts towards morphological

segmentation of tokens of Nguni languages. For

supervised methods, annotated data is required,

which currently exists as canonically segmented

data in the NCHLT corpus and surface segmented

data in the Ukwabelana corpus. In this paper, we

present a method and segmentation strategy based

on a computational grammar for isiZulu. The

grammar, which itself has some limitations in pro-

cessing speed and robustness to unexpected input,

is used to create a new set of segmentations for the

tokens of the Ukwabelana corpus.

By training various models with the same architec-

ture but on different datasets, we first show that our

approach enables us to match the performance of a

model trained on pre-existing data. We also show

that our approach provides the flexibility to deter-

mine a suitable segmentation strategy and to gener-

ate data that reflects this strategy.

Keywords: Nguni languages, agglutinative lan-

guages, morphological segmentation, language

models.

1 Introduction
IsiZulu is part of the Nguni language family, a group

of low-resourced Bantu languages belonging to a

larger Niger-Congo language family, and they are

widely spoken in Southern Africa (Mesham et al.

2021). In South Africa, out of 12 official languages

that currently exist, four of them are Nguni lan-

guages (isiXhosa, isiNdebele, isiZulu, and Siswati).

This group of languages are agglutinative in their

morphology and have a conjunctive orthography

(Bosch & Pretorius 2002). As morphologically rich

languages, words are typically formed by combin-

ing multiple small meaning-carrying units known as

morphemes (Bosch & Pretorius 2002).

Since the Nguni languages are considered resource-

scarce, this state has hampered progress towards de-

veloping technological tools essential to preserving

these languages’ long-term digital vitality (Loubser

& Puttkammer 2020). This effect is especially severe

for resource-scarce agglutinative languages, since a

given root or stem may appear in hundreds of differ-

ent morpheme sequences. Moreover, for the Nguni

languages, these morpheme sequences are written

conjunctively as single tokens. The consequence is a

tendency towards data sparsity, where any given cor-

pus is unlikely to contain sufficient forms of all roots

and stems. This has led research efforts into mor-

phological segmentation as an effective approach to

language modelling for these languages.

2 Overview of linguistic features of
isiZulu

In this section, we briefly describe the linguistic fea-

tures of isiZulu (and its related languages) that re-

quire the kind of segmentation described in this pa-

per.

Languages are typically grouped based on their mor-

phological typology, which are commonly distin-

guished into four types, isolating, agglutinative, fu-

sional and polysynthetic (Pirkola 2001). The major-

ity of the Bantu languages are considered to have an

agglutinative morphology and can be further cate-

gorized into having conjunctive or disjunctive or-

thography (Bosch & Pretorius 2002). Out of the

nine Southern Bantu languages that exist in South

Africa, five are considered to be disjunctively writ-

ten and the other four (i.e. Nguni languages) are

considered to be conjunctively written.

A language is considered disjunctively written when

a single linguistic word can result in multiple ortho-

1



Digital Humanities for Inclusion

graphic words. Where in contrast, a conjunctively

written language maintains a one-to-one correspon-

dence between linguistic words and orthographic

words. To illustrate this disjunction, let us con-

sider the phrase ”I will tie them”, which in Southern

Sotho, a disjunctively written language, it is written

as, ke tla mo tlama with four distinct orthographic

words written separately. However, in a conjunc-

tively written language like isiZulu, this phrase is

written as one orthographic word that corresponds

to its linguistic word, ngizombophela, with its con-

stituent morphemes ngi-zo-m-bophel-a. In this re-

gard to break a conjunctively written word into its

respective morphemes, one will need to do a mor-

phological segmentation.

In agglutinative languages such as the Nguni lan-

guages, the morpheme combination and order are

usually restricted, based on word formation rules

known as morphotactics. A central mechanism

of morphotactics in the Bantu languages is via the

noun classification system, which categorizes nouns

into a number of noun classes based on prefixal

morphemes (noun prefixes). These noun prefixes

further play a pivotal role in linking nouns to other

words and govern the grammatical structure of dif-

ferent parts of speech Bosch et al. (2008).

The agglutinating nature of the Nguni languages,

coupled with their conjunctive orthography, seems

to necessitate morphological segmentation for the

purposes of language modelling. The approach de-

scribed in this paper provides linguistic control over

the process of creating suitable training data for

such segmentation models.

3 Morphological segmentation for
the Nguni languages

Morphological segmentation refers to segmenta-

tion of words or tokens done with reference to the

morpheme sequence that has given rise to a surface

form. When canonical segmentation is in view, it is

quite possible for isiZulu to determine the “correct”

segmentation, since the canonical forms of mor-

phemes of the language are well understood from

a linguistic point of view. However, when surface

segmentation is attempted for isiZulu, the high de-

gree of morphophonological alternation makes it

less clear what a suitable segmentation should be.

For example, in the word ngomuntu, the canoni-

cal morpheme sequence is nga+u+mu+ntu. Both

ng+o+mu+ntu and ngo+mu+ntu could therefore

be acceptable surface segmentations of the word,

and the suitability of either may be argued for from

a linguistic perspective.

The purpose of segmentation, however, is to en-

able better language modelling on other tasks, and

it remains an open question what the ideal gran-

ularity of surface segmentation should be (Meyer

& Buys 2022). This is why for an unsupervised

method such as Byte-pair Encoding, the hyperpa-

rameter that fixes granularity must be optimised

(Salesky et al. 2020).

In this paper, we present a method for generating

surface segmented data according to a specific, but

variable, segmentation strategy. This data can then

be used for supervised training of a segmentation

model. We describe the method for generating the

data in the Section 4.1.

3.1 Related work
Despite several efforts involving various techniques,

morphological segmentation for the Nguni lan-

guages is still considered an active field based on the

no-free-lunch theorem (Wolpert & Macready

1997). According to this theorem, there exists no

one-size-fits-all morphological segmentation tech-

nique that can perfectly handle all languages, types

of words, or linguistic structures. In this regard,

different approaches and techniques should be ex-

plored since they have differing limitations in dif-

ferent settings. In this section we discuss research

efforts in morphological segmentation with partic-

ular focus on the Nguni languages.

In computational linguistics, there are usually two

approaches that are used to achieve morphological

segmentation, namely rule-based or machine learn-

ing (Anand Kumar et al. 2010). The rule-based ap-

proach utilises a predefined set of rules based on ex-
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perts’ knowledge and the morphological structure

of the given language (Eiselen & Puttkammer 2014).

Pretorius & Bosch (2003) developed a morphologi-

cal analyser for isiZulu utilising the language rules;

this was based on theXeroxFinite State tools (Beesley

& Karttunen 2003). A few years later Bosch et al.

(2008) bootstrapped this work into other Nguni

languages.

The work of Eiselen & Puttkammer (2014), com-

monly known as the NCHLT Text project, aimed

to develop different text resources for low-resourced

South African languages, which included morpho-

logical decomposers/segmenters. These decom-

posers were rule-based, and for the agglutinative

and conjunctively written languages, i.e. Nguni lan-

guages, their implementations were based on the

work of Bosch et al. (2006) on a morphological

analyser. The resulting data was canonically seg-

mented. Similarly,Ukwabelana project used a semi-

automatic process that implemented a partial mor-

phological isiZulu grammar based on definite clause

grammar to create surface segmented isiZulu data

(Spiegler et al. 2010).

Most of the aforementioned rule-based tools per-

formed well in low-resource settings such as that

of Nguni languages. Yet, challenges have been re-

ported to be associated with them in the literature.

The most common challenge is their dependence

on experts’ knowledge for the development, main-

tenance, and expansion of their rules (du Toit &

Puttkammer 2021). This subsequently makes their

development and in some case their maintenance

to be an expensive and time-consuming endeavour.

Another significant challenge is their robustness,

both to linguistic structures not covered by the rules

as well as to unseen vocabulary.

In contrast to rule-based approaches, machine

learning techniques learn patterns from large an-

notated data or raw data to perform various tasks

(Murphy 2012). These techniques learn from exam-

ples and data rather than relying on explicitly de-

fined rules like in rule-based systems. There are four

commonly established machine learning methods:

supervised, unsupervised, semisupervised, and rein-

forcement learning (Murphy 2012). The first three

are the most commonly used in the task of morpho-

logical segmentation.

In an unsupervised segmentation approach, the al-

gorithm models from raw texts to produce respec-

tive segments. For this kind of technique, Mzamo

et al. (2019) as well as Moeng et al. (2021) have inves-

tigated various techniques. In the context of super-

vised methods that draw patterns from labeled data,

Moeng et al. (2021) trained a supervised canonical

segmenter using the data from the NCHLT project,

while du Toit & Puttkammer (2021) created a new

linguistically annotated datasets and used them to

train a canonical segmenters to be used for morpho-

logical analysers.

To date, supervised surface segmentation for

isiZulu has primarily relied on the Ukwabelana

dataset (Spiegler et al. 2010). Notably, researchers

such as Quasthoff et al. (2014) and Cotterell et al.

(2015) have leveraged this dataset to develop surface

segmentation models. Among these, Cotterell et

al. (2015) stand out as they not only developed a

system called CHIPMUNK but also rigorously

evaluated its performance. In their evaluation,

they achieved an impressive F1-score of 87.80% for

isiZulu, demonstrating the effectiveness of their

segmentation approach.

In comparing various approaches, including semi-

supervised learning, Spiegler et al. (2008) con-

ducted an experiment on morphological segmenta-

tion with different levels of supervision. This study

confirmed supervised techniques as a superior and

preferable method of segmentation. Though this is

the case, the acquiring of morphological segmented

data has been deemed nontrivial and often expen-

sive since it needs experts’ knowledge.

4 Methodology

4.1 Datasets
The main contribution of this work is in demon-

strating that suitable annotated data can be gen-

erated for training supervised surface segmenta-

tion models. Our experiment is based on the
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Ukwabelana segmented tokens in order to allow

for comparison against the most relevant existing

dataset.

The Grammatical Framework isiZulu Resource

Grammar (ZRG) is an implementation of isiZulu

morphosyntax using the GF programming lan-

guage. The GF runtime can be used to enable pars-

ing of text to obtain syntax trees, as well as linearisa-

tion of syntax trees into natural language. The or-

thography engineering capabilities of the GF run-

time allow for custom linearisation (Angelov 2015).

An in-depth description of how the ZRG models

isiZulu at a subword level is beyond the scope of this

paper: the interested reader is referred to Marais &

Pretorius (2023). Relevant to this work is the fact

that the ZRG systematically uses a specific token

for binding subwords together at runtime to form

grammatically correct surface tokens. It is therefore

possible to parse an isiZulu token in order to obtain

a syntax tree, and to use a custom linearisation to

produce its segmented version. Figure 1 shows the

parse tree for the token ngizombophela, where it is

clear that the grammar has parsed the token as con-

sisting of a number of subword segments.

It should be noted that the ZRG was not originally

implemented as a surface segmentation tool, but

as a resource grammar (Ranta et al. 2020), which

Figure 1: ZRG parse tree for ngizombophela

could either be used as a linguistic software library

for application grammar engineering, or as a gen-

eral purpose parser for isiZulu, albeit a somewhat

brittle one. As such, the segmentations produced

for this experiment were simply the default seg-

mentations implicitly modelled in the grammar. It

would be relatively simple to adapt the core mor-

phology operations of the grammar to reflect a dif-

ferent segmentation strategy, whether more or less

fine-grained.

In order to compare our annotation process with

what is already available, the segmented tokens of

the Ukwabelana corpus were re-segmented using

the ZRG. Due to the presence of non-isiZulu words

and loan words that are not included in the lexicon

of the ZRG, as well as some missing linguistic con-

structions in the ZRG, segmentations for only 7992

of the original 10040 could be recreated. To mitigate

this, a data augmentation process was followed in

which the stem segment of each re-segmented token

was “scrambled”: the first and last characters were

retained, but all characters in between were replaced

one-for-one with a randomly chosen character, con-

sonants being replaced with consonants and vowels

with vowels.

In this way, three datasets were prepared, namely

the original Ukwabelana surface segmented dataset,

the GF-based re-segmented dataset, and the GF-

based scrambled dataset. The original Ukwa-

belana dataset was split into training, validation and

evaluation sets (at a ratio of 80:10:10), and these

were matched token-wise with the GF-based re-

segmented annotations where available. In order to

evaluate our work in a suitable way, the evaluation

set for the GF-based re-segmentations was manu-

ally completed to be consistent with what the ZRG

should have produced. The resulting split ratio for

the GF-based re-segmented data was 78:10:12, since

some tokens were left out of the training and valida-

tion sets, while the evaluation set retained its origi-

nal size. The scrambled data was split 90:10 into a

training and validation set.

These datasets formed the basis for training four dif-

ferent models using the same architecture, as show
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in Table 1.

4.2 Model Training
We used a sequence-to-sequence model to train our

segmenters, namely a Transformer model based on

the work of Vaswani et al. (2017). Our transformer

operates at a character level, taking a word as input

and transforming it into the relevant surface mor-

phemes separated by a space.

Training Setup: In terms of implementation, we

adapted a ready-available Pytorch implementation

of a translation Transformer model, [1]. To train the

models, we split the original data set into three non-

overlapping parts, namely, training, validation and

evaluation sets. We kept the parameters constant

for the model training across all four models. The

relevant parameters were the number of heads (8),

epochs (30), decoder layers (3), encoder layers (3),

batch size (128) and embedding size (512).

5 Results and evaluation
To evaluate and compare the performance of our

models, we used two metrics, namely, BLEU (Bilin-

gual Evaluation Understudy) and chrF (character n-

gram F-score); these are commonly used metrics in

NLP, mostly to evaluate machine translation out-

puts. BLEU is a precision-based evaluation met-

ric that implements a modified version of n-gram

that measures the overlapping of words between the

candidate set and reference(s) set (Papineni et al.

2002). Similarly, the chrF follows the same logic ex-

cept that the n-grams are considered at the charac-

ter level (Popović 2015). Both of these metrics are

provided through the NLTK library for implemen-

tation. Considering that the BLEU scores here are

measured on the segment-level, it is probably more

indicative of success for the purposes of language

modelling than chrF, since it is the segments that

would be used as the vocabulary items of a language

model.

In addition to BLEU and chrF, we also incorpo-

rated F1-score into our evaluation framework. This

metric is commonly used in the context of mor-

phological segmentation to provide a balanced as-

sessment of precision and recall in terms of seg-

mentation. Yet it is worth mentioning that this

metric does not evaluate the order of the segments

produced by a model, which is a crucial aspect of

subword modelling, especially for generative mod-

els. Therefore, for this study, we primarily rely on

BLEU and chrF as our main evaluation metrics,

while we include the F1-score in our evaluation, to

give the overall performance of the models and facil-

itating comparisons with other available segmenters

for further experimentation.

In Table 2, each segmenter is evaluated on its own

terms, so to speak, where the evaluation set reflects

the implicit segmentation strategy of the data itself.

As such, the results simply show to what extent the

Transformer model was able to learn this segmen-

tation strategy for each dataset. The models for

which scrambled (synthetic) data was used during

training were evaluated on the real data of the gf-
eval set. It is clear that, in terms of the chrF score,

the addition of the scrambled data to the GF-based

re-segmentations allowed gf-scramble-seg to slightly

outperform the model trained on the original data.

In terms of the BLEU score, the results for these

models are reversed, and hence we can say that our

data annotation process enabled us to match the

performance achieved on the existing dataset.

It is worth considering that on the Ukwabelana

evaluation, the model trained on the original data

(ukwabelana-seg), as shown in Table 2, produces

a significantly better F1-score than gf-scramble-seg.

Despite this, their BLEU scores are comparable and

the latter’s chrF score is significantly better. This

seems to show that, despite worse precision and

recall, gf-scramble-seg seems to have learnt enough

about the order of segments to achieve comparable

results to ukwabelana-seg.

The results for scramble-segm are particularly in-

triguing, since we know that the model could not

have seen any of the stems present in the tokens of

the evaluation set. Hence, its performance can be

ascribed to having learnt surface segmentation of

isiZulu somewhat independently of the vocabulary
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Table 1: Models and datasets

Model name Training data Validation data Evaluation data

ukwabelana-seg ukwabelana-train ukwabelana-val ukwabelana-eval

gf-seg gf-train gf-val gf-eval

scramble-seg scramble-train scramble-val gf-eval

gf-scramble-seg gf-train + scramble-train gf-val + scramble-val gf-eval

Table 2: Results on designated evaluation set

Model name chrF BLEU F1-score

ukwabelana-seg 0.808 0.909 86.906

gf-seg 0.881 0.889 80.543

scramble-seg 0.881 0.851 72.243

gf-scramble-seg 0.894 0.901 81.940

Table 3: Results on manually segmented evaluation
set

Model name chrF BLEU F1-score

ukwabelana-seg 0.848 0.781 58.824

gf-seg 0.833 0.828 64.014

scramble-seg 0.825 0.787 56.373

gf-scramble-seg 0.846 0.838 61.041

of the corpus it was trained on.

Having evaluated each segmenter on its own terms,

we also evaluated the models on a small set of man-

ually segmented tokens from a different domain,

namely 100 randomly chosen tokens from the usage

examples of the isiZulu African Wordnet. The man-

ual segmentation was performed to reflect a specific

segmentation strategy, aimed at a moderate granu-

larity. For example, pre-prefixes and base prefixes of

nouns were considered as single segments and verbs

were segmented in such a way that the root and its

verbal extensions formed a single segment (due to

the lexical-semantic effect of the extensions on the

root). The strategy bears some natural similarity to

what the ZRG produces by default, since both stem

from a linguistically oriented approach to isiZulu

subwords. However, the specifics of the strategy are

at this stage not as important as that it was chosen

consciously and applied consistently, since to de-

cide on and implement a different strategy would, as

mentioned earlier, require a relatively simple adap-

tation of the ZRG.

Table 3 shows the results, and here it is clear that

the gf-scramble-seg outperformed the other models

with respect to the BLEU score. We therefore con-

clude that it is possible to use the ZRG to annotate

data according to a specific segmentation strategy,

which can be used to outperform models trained on

existing, unalterable annotated data.

The advantage of being able to control the seg-

mentation strategy of the annotation process is, of

course, that various strategies could be compared,

possibly even for different downstream tasks and

domains. Furthermore, our process need not be

limited to the Ukwabelana dataset. As an auto-

mated process, it is relatively cheap, and can be ap-

plied to more datasets, which will likely improve its

performance further.

6 Conclusion
In this paper, we introduced a method and seg-

mentation strategy based on a computational gram-

mar for isiZulu, namely the isiZulu Grammatical

Framework Resource Grammar, to create a mor-

phological surface segmented data. We have eval-

uated this method in terms of its ability to gen-

erate data that can match what is currently avail-

able as surface segmented data, namely the Ukwa-

belana dataset. Moreover, the method allows for

flexibility with regards to segmentation strategies,

enabling the exploration of optimal strategies based

on linguistic approaches to isiZulu subword mod-

elling.

In a resource scarce environment, annotated data is

especially costly to obtain, and hence an automated

approach to producing such data would enable new

6



Journal of the Digital Humanities Association of Southern Africa, Vol. 5, No.1

avenues of research in supervised methods, which in

turn would contribute to advancing research into

subword language modelling for isiZulu.

Notes
[1] https://pytorch.org/tutorials/

beginner/translationtransformer.
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