
Journal of the Digital Humanities Association of Southern Africa, Vol. 5, No.1

Algorithm for assisting
grammarians when extracting
phonological conditioning rules
for Nguni languages

Mahlaza, Zola
Department of Computer Science, University of
Cape Town
zmahlaza@cs.uct.ac.za
Khumalo, Langa
SADiLaR, North-West University
Langa.Khumalo@nwu.ac.za

Abstract

Text generation models, the core technology that
underpins chatbots such as ChatGPT [1], that
are created to support morphologically complex
African languages require the modelling of sub-
word processes such as phonological condition-
ing. Since we rely on explicit phonological con-
ditioning rules that are manually identified by
grammarians to determine the extent to which
such models are able to perform for such lan-
guages, there is a need to assist grammarians via
computational solutions to increase their cov-
erage of known rules. At present, there are
no existing algorithms to extract the rules for
such processes and therefore enable the creation
of building better text generation models. We
present a new algorithm for extracting phono-
logical conditioning rules for Nguni languages.
All the rules extracted by the algorithm are valid
when the input word and associated morphemes
are judged to be valid. The algorithm has the po-
tential to improve the productivity of grammari-
ans and enable the creation of modern text gen-
eration technologies that support and promote
under-resourced languages.

Keywords: language technologies, low-resource
languages, data extraction, phonological condi-
tioning, natural language generation.

1 Introduction

Real-world deployments of Natural Language
Generation (NLG) technologies are becoming
prevalent. Existing research has demonstrated
the potential of these technologies in wide-
ranging applications such as healthcare (e.g.,
Yang et al. (2022)) and education (e.g., Kasneci
et al. (2023)). If such technologies are to be of
use to individuals in Africa then they will need
to also support a variety of low-resourced lan-
guages. In the case of South Africa, since a
combined 43% of the population speaks either
isiZulu, isiXhosa, SiSwati, or isiNdebele as an
L1 (see Lehohla (2011)), then it is reasonable to
expand the coverage of NLG systems to those
languages.

One of the linguistic phenomena that needs to
be captured when generating valid text for afore-
mentioned languages is the process of phono-
logical conditioning. To demonstrate the pro-
cess: the diminutive form of intaba ‘mountain’
is formed by appending the suffix -ana and in the
process, the phonological rule [2] that converts
-b- to -tsh- is activated; hence, intaba + -ana
becomes intatshana ‘small mountain’ instead
of intabana. Since the languages are under-
resourced and grammatically complex, prevalent
neural text generation architectures are likely
to struggle to capture the linguistic phenomena
when forming individual words. This is implied
by the performance of neural models created
to undo phonological conditioning — canoni-
cal segmentation in Nguni languages (Moeng
et al. (2021)). Moeng et al. (2021)’s best per-
forming canonical segmentation models have F1
scores around 0.7 [3]. However, analysis of
the code [4] shows that the true performance
is likely to be much lower since the quantifi-
cation of the performance does not take the or-
der and completeness of the morphemes into ac-
count. For instance, when given the word ezin-
jeni ‘in dogs’ and valid canonical segmentation
ez-i-nja-ini, the implementation would consider
the predicted segmentation nja-i valid since both
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its morphemes are found in the valid segmenta-
tion (underlined segments).

If the rules were extensively documented in
this low-resourced setting, we could make the
database of rules accessible to our text gen-
eration models, and they would only have to
solve the simpler task of deciding whether to
apply each rule when combining sub-word el-
ements (instead of also identifying them). In
addition, grammarians would have complete un-
derstanding of the processes and how they have
changed over time. However, the rules are cur-
rently not extensively documented because the
process of identifying and studying phonolog-
ical conditioning rules is time-consuming as it
is conducted manually by grammarians. There
are also no models or algorithms for extracting
these rules from the existing datasets of words
and canonical morphemes that have been created
by computer scientists and grammarians. This
presents a barrier to grammarians that are study-
ing the phenomena as an aim in itself and engi-
neers who are attempting to create NLG mod-
els.

In this paper, we present an algorithm for
extracting phonological conditioning rules for
Nguni languages when provided with words and
the canonical morphemes. We used the algo-
rithm to extract 298 (isiZulu), 312 (isiXhosa),
308 (siSwati), and 279 (isiNdebele) unique rules.
We evaluated the algorithm by randomly sam-
pling 50 rules for each language and LK, a gram-
marian, determined the validity of the input word
and canonical morphemes, determined whether
they match, and whether the extracted rule is
valid. Evaluation showed that 100% of the rules
are valid when the input word and morphemes
are valid and match for each language. Gram-
marians can use the algorithm to automatically
extract phonological conditioning rules. Engi-
neers can use the extracted rules as input to their
neural models to determine the extent to which
explicit knowledge improves them.

The rest of the paper is structured such that

Section 2 discusses existing work, Section 3
focuses on how to align words and canonical
morphemes, Section 4 focuses on the extrac-
tion of phonological conditional rules, Section 5
presents evaluation of the algorithm, Section 6
presents the results, Section 7 discusses, and
Section 8 concludes.

2 Related work
There are a number of software packages that
can be used to study African languages. For in-
stance, WordSmith [5] can be used to study con-
cordances and word forms. Nonetheless, there
are no computational tools, models, or algo-
rithms for extracting phonological conditioning
rules. As such, we expand our analysis of exist-
ing work to also focus on work that codifies, not
just extracts, such rules.

There are only three efforts aimed at directly
capturing phonological conditioning rules for
Niger-Congo B languages. They all either ex-
tract the rules from grammar literature, that is
often outdated, or source them from a gram-
marian. These rules are then captured using a
programming language. For instance, Keet &
Khumalo (2016) use Python to capture rules for
isiZulu, the NguniTextGeneration [6] grammar
engine uses Java to capture rules for isiZulu and
isiXhosa, and Byamugisha (2019) also uses Java
to capture rules for Runyankore. The biggest
limitation with the approach taken by these au-
thors is that their rules are motivated by use cases
(e.g., ontology verbalisation or weather forecast
generation), are sourced from dated grammar lit-
erature, they are not exhaustive, and do not cover
undocumented rules.

When widening the search for related literature
further, we see that there exists a verb parser and
generator (Pretorius et al. (2017)), morpholog-
ical analysers (Pretorius & Bosch (2009), Pre-
torius et al. (2009)), morphological segmenters
(e.g., Mzamo et al. (2019), Moeng et al. (2021)),
language models (e.g., Myoya et al. (2023)),
and a Grammatical Framework (GF) grammar
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[7] that also encode morphological condition-
ing rules, even though that is not their main
goal. Specifically, the morphological analysers
and canonical segmenters take a word as in-
put and produce canonical morphemes, hence
they need to capture phonological condition-
ing rules, even if that is in an implicit man-
ner, to be able to reverse them. For instance,
Moeng et al. (2021)’s models can only gen-
erate the canonical morphemes nga-i-zin-konzo
when given ngezinkonzo ‘by the services’ if they
model the reversal of the phonological condi-
tioning rule a + i → e. These resources also
cannot uncover new rules and additional limita-
tions to this type of work are as follows:

• The morphological analysers rely on finite
state machines that are based on limited and
hand-coded rules;

• The morphological segmenters and lan-
guage models do not model phonological
conditioning directly but as part of a larger
task, hence they have no identifiable mod-
ule that can be used for phonological con-
ditioning exclusively; and

• Pretorius et al. (2017)’s GF rules encode
phonological conditioning directly but they
are limited to Setswana verbs only. The
isiZulu resource grammar covers phonolog-
ical conditioning rules, as part of general
morphosyntax, but it is difficult to isolate
them as they are not orthogonal.

All in all, there is still a need to create algo-
rithm(s) that can extract phonological condition-
ing rules from existing canonical segmentation
datasets.

3 Aligning words and mor-
phemes

Let Σ denote the alphabet of a language, Σs de-
note the alphabet that includes a special charac-
ter for separating morphemes (i.e., -), and Σsm
denote an extension of Σs that includes a sym-
bol to denote a gap in an alignment (i.e., ?).

Given the alphabet, we can define a word as fol-
lows:

Definition 1 (Word) A word is the row vector
aij ∈ Σ1×n of length n.

For instance, the isiZulu term ezisetshenziswa
‘that are used’ is represented using the word [e
z i s e t s h e n z i s w a] of length 15. A word can
be split into parts to form a canonical morpheme
sequence.

Definition 2 (Morpheme sequence) We define
a canonical morpheme sequence of a word −→w
with length n as the row vector aij ∈ Σ1×m

s of
length m where m ≥ n.

For instance, the canonical morpheme sequence
of the isiZulu term ezisetshenziswa ‘that are
used’ is the vector [e z i - s e - b e n z - i s -
w - a] of length 18. This sequence is not formed
in an arbitrary manner. Instead, it is formed by
separating a word’s linguistic morphemes using
the special symbol -.
A word and morpheme sequence can be aligned,
based on their matching elements, to iden-
tify a divergence of characters. The exis-
tence of a divergence suggests that characters
were introduced by a phonological conditioning
rule.

Definition 3 (Word/morpheme alignment)
An alignment of a word −→w of length n and its
canonical morpheme sequence −→s of length m is
the matrix aij ∈ Σ2×l

sm where l ≥ max{m, n}.
For instance, a possible alignment of the isiZulu
word [e z i s e t s h e n z i s w a] and
canonical morpheme sequence [e z i - s e -
b e n z - i s - w - a] is the following ma-
trix:

[
e z i ? s e ? t s h ? e n z ? i s ? w ? a
e z i - s e - ? ? ? b e n z - i s - w - a

]
The above

alignment is one of many possible options. We
generate all of them by creating an alignment
tree via Algorithm 1.

We demonstrate the algorithm’s tree construc-
tion process using the word [u b u n t u] and
canonical segmentation [u b u - n t u], visualised
in Figure 1. For the input pair, the algorithm con-
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]

...
[
u b u n t ? ? ? u
u b u ? ? − n t u

]

...

...
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u b u ?
u b u −

]
...

[
u b u ? n t u
u b u − n t u

]

Figure 1: Partial alignment tree where each node captures the strings that have been aligned at each
point. The leaf nodes capture all the possible candidate alignments. Ellipsis are used to illustrate
abbreviated sub-trees and nodes.

Algorithm 1 Algorithm for building an align-
ment tree for a sequence of letters
1: procedure COMPLETETREE(leftw, leftm, curr node)
2: wi = peekHead(leftw)
3: mi = peekHead(leftm)
4: if wi == mi then
5: n = Node(curr node, wi , mi)
6: completeTree(removeHead(leftw),

removeHead(leftm), n))
7: else
8: n = Node(curr node, wi , ?)
9: m = Node(curr node, ?, mi)

10: score0 = getScore(n)
11: score1 = getScore(m)
12: if score0 > score1 then
13: completeTree(removeHead(leftw), leftm, n)
14: else if score0 < score1 then
15: completeTree(leftw, removeHead(leftm), m)
16: else
17: completeTree(removeHead(leftw), leftm, n)
18: completeTree(leftw, removeHead(leftm), m)
19: end if
20: end if
21: end procedure

structs a binary tree using an in-order traversal.
The characters of the input are processed one at a
time, from left to right (lines 2-3), and if the lead-
ing characters of the input are the same (line 4),
it constructs a node whose parent is the current
node (line 5) and the characters from the word
and morpheme sequence are added to the top and
bottom of the node’s alignment matrix (lines 5).

The process continues with the alignment of the
remaining characters (lines 6). When the char-
acters dot not match (lines 7-20), we construct
two alternative paths of alignments where in one
path we align the word’s letter a gap (i.e., ?)
(line 8) and in another we align the morpheme
sequence’s letter with a gap (i.e., ?) (line 9).
For instance, after aligning the first three letters
(highlighted blue) in the case of the word [u b u
n t u] and morpheme sequence [u b u - n t u],
third node in Figure 1 (left-to-right), the lead-
ing character in the remaining characters [8] of
the word and morpheme sequence do not match
(i.e., they are -n- and - respectively). We then
create two sub-tree paths. In one sub-tree, we
align the -n- from the word with a gap (i.e., ?).
For the second sub-tree, we align the morpheme
separator letter - with a gap (i.e., ?). This pro-
cess continues until all letters are aligned. We
also make use of a simple heuristic: we do not
expand a path if there is a direct alternative path
with more matching aligned characters — calcu-
lated via getScore (lines 10, 11, 12, and 14). The
leaf nodes of the constructed tree will contain
alignment matrices — two examples are illus-
trated via the right most nodes in Figure 1.

Once we have extracted the alignment matrices,
we then split each matrix using the borders of
the morphemes as phonological changes happen
in and around those borders.
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Definition 4 (Aligned morpheme spans) The
morpheme spans for a given alignment A, is the
ordered set, denoted B, of matrices obtained
by splitting the alignment matrix at the points
where there are morpheme separators. The set
satisfies the following conditions:

1. B = {m1, m2, . . . , mα}
2. A = [m1

−→s m2
−→s ... −→s mα] where −→s =[

?
-

]
.

The process of extracting spans is trivial as one
only needs to identify positions where symbols
? and - are aligned and then split the matrix.
For instance, the set of aligned morpheme spans
for the example alignment matrix listed below
Definition 3 contains the following elements,
in the order in which they are listed (left-to-
right, top-to-bottom): m1 =

[
e z i
e z i

]
, m2 = [ s e

s e ],
m3 =

[
t s h ? e n z
? ? ? b e n z

]
, m4 = [ i s

i s ], m5 = [ w
w ],

m6 = [ a
a ]

Some of the morpheme spans have gaps in one
or both rows (i.e., has the symbol ?) while others
do not. When there are gaps in a span, this indi-
cates that it is likely that there was a change in
characters due to phonological conditioning and
those spans can be used to extract phonological
conditioning rules.

We now turn to focus on the definition of such
rules and how to extract them from spans.

4 Retrieving phonological condi-
tioning rules

We use an aligned morpheme span to formally
define a phonological conditioning rule. For an
alignment matrix, consider the ordered set of all
its aligned morpheme spans {Si, . . . , Sk} where
each S = aij ∈ Σn×m

sm satisfies the following two
conditions:

1. ∃i, j : aij =? for some 1 ≤ i ≤ n, 1 ≤ j ≤ m
2. ∃i, j : ai1 ̸=? or a1j ̸=? for some 1 ≤ i ≤ n,

1 ≤ j ≤ m
Stated in another way, we filter out spans such
that we are only left with ones that have at least

M =
t       s     h     ?     e     n     z

?     ?     ?     b     e     n     z

0 1 2 3 4 5 6

Matrix

Horiz. Indices

Figure 2: Visualisation of the horizontal (horiz.)
indices of the running example’s M matrix

one ? symbol and one letter on the first or sec-
ond row on the matrix. For instance, in the
case of the spans from our running example,
we see that m3 =

[
t s h ? e n z
? ? ? b e n z

]
is the only span

with at least one ? symbol and at least one let-
ter. We can then concatenate such spans, while
maintaining the order in which they appear in
the alignment matrix, to obtain the new matrix
M = [m1 m2 . . . mk] and use the matrix to define
a phonological conditioning rule.

Prior to defining these rules, we first introduce a
convenient way to index the matrix M. Let I =
{µ(0) ≡ 0, µ(1), ..., µ(n)} denote the set with the
first horizontal position of the matrix (i.e., µ(0),
its value is set to 0 by definition) and the rest
of the horizontal positions of the matrix where
the top and bottom values are both letters (i.e.,
tµ(i), bµ(i) ∈ Σ for i ∈ [1 : n]). We use the symbol
µ when denoting these positions since they are
relative to the matrix M and not Definition 3’s
alignment matrix. For instance, since M = m3 in
our running example, we can deduce — as illus-
trated in Figure 2 — that I = {0, 4, 5, 6}.
Definition 5 (Phonological conditioning rule)
For any consecutive indices i and j from I, the

sub-matrix
[

tα(i) ... tα(j)−1
bα(i) ... bα(j)−1

]
of M is a phonological

conditioning rule if the conditions are met:

1. For its every horizontal position, the values
at the top and bottom cannot both be equal
to ?.
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2. At least two characters in the bottom row of
the matrix are letters from the alphabet Σ

Otherwise,
[

tα(i) ... tα(j)−1,tα(j)
bα(i) ... bα(j)−1,bα(j)

]
is a phonological

conditioning if it meets the two conditions.

We illustrate a phonological conditioning rule
using our running example’s word [e z i s e t s h
e n z i s w a] and associated morpheme sequence
[e z i - s e - b e n z - i s - w - a]. As introduced
in the previous paragraph, I = {0, 4, 5, 6} for the
pair and when considering the first two elements
of I (i.e, i = 0 and j = 4), then

[
tα(i) ... tα(j)−1
bα(i) ... bα(j)−1

]
=

[ t0 ... t3
b0 ... b3

]
=
[
t s h ?
? ? ? b

]
. This matrix satisfies Defi-

nition 5’s first rule but not the second rule. On
the other hand,

[
tα(i) ... tα(j)−1 tα(j)
bα(i) ... bα(j)−1 bα(j)

]
=
[ t0 ... t3 t4
b0 ... b3 t4

]
=

[
t s h ? e
? ? ? b e

]
and the sub-matrix satisfies both con-

ditions; hence it is a phonological conditioning
rule. This sub-matrix captures a special case of
the process called palatalization that is respon-
sible for the transformation of /b/ to /tsh/ (i.e.,
b + e→ tshe in this case). Using the above defi-
nition, we developed Algorithm 2 for extracting
the phonological conditioning rules.

The algorithm expects a word and canoni-
cal morpheme sequence (line 1) and retrieves
the alignments via getAlignments (line 3) — a
method defined in Algorithm 3. The algorithm
retrieves all the leaf nodes, from the alignment
tree constructed via Algorithm 1, that have the
most matching aligned letters. Using Figure 1
to demonstrate, if the two visualised leaf nodes
(right most nodes) were the only ones in the
tree then the top node would be chosen since
it has 6 matching letters while the bottom node
has 4. Algorithm 2 then retrieves the spans for
each alignment using the procedure described
below Definition 4 and filters spans to select the
ones that contain at least one ? symbol and at
least one letter — this is denoted as getSpans
in the algorithm (line 5). The spans are con-
catenated to form a matrix M (line 6-9). Once
matrix M is created, the algorithm then iterates
over the start of the index and the indices of
the matrix where there are letters (lines 10-15)

Algorithm 2 Algorithm for extracting phono-
logical conditioning rules from a word and its
morphological decomposition
Require: w,m

1: procedure GETRULES(w,m)
2: rules← []
3: alignments← getAlignments(w,m)
4: for alignment in alignments do
5: spans← getSpans(alignment)
6: M ← []
7: for span in spans do
8: concatenate(M, span)
9: end for

10: I ← [0] + getIndicesOfLetters(M)
11: for consecutive i, j in I do
12: if M[i,j-1] is phon. cond. rule

then
13: rules.add(M[i, j − 1])
14: else if M[i,j] is phon. cond. rule

then
15: rules.add(M[i, j])
16: end if
17: end for
18: end for
19: return rules
20: end procedure

and extracts the phonological rules by checking
whether each sub-matrix satisfies Definitions 5’s
conditions (lines 12-13, 14-15).

The algorithm implementation and supplemen-
tary data is available from https://zenodo.

org/records/10060974.

5 Evaluation
We downloaded and combined the SADiLaR-
II [9] canonical morpheme segmentation data
for Nguni languages and the labelled morpheme
segmentation data from the Ukwabelana corpus
(Spiegler et al. (2010)). We preprocessed the
data in a number of ways. For instance, re-
moved entries where the word is only a punc-
tuation mark (e.g., a full-stop), a foreign word
(e.g., the English word “Inductive”), and entries
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Algorithm 3 Algorithm for retrieving all possible alignments for a word and canonical morpheme
sequence
Require: w,m # Word and morpheme sequence expected as input
1: procedure GETALIGNMENTS(w,m)
2: parent = ∅ # Create the parent of alignment (binary) tree’s root
3: completeTree(w,m, parent) # Construct tree with possible alignments for w and m using Algo. 1
4: max nodes = getChildrenNodesWithMostMatchingLetters(root) # Get leaf nodes with most aligned matches
5: alignments = [] # Create empty list of alignments
6: for node in max nodes do
7: t ← node.getTop() # Letters occupying the top row of the node’s alignment matrix
8: b← node.getBottom() # Letters occupying the top row of the node’s alignment matrix

9: alignment =
[

t
b

]
# Creating alignment matrix

10: alignments.add(alignment) # Collect current alignment extracted from node
11: end for
12: return alignments
13: end procedure

where the number of each letter is the same be-
tween the word and its corresponding canoni-
cal segmentation (e.g., ababeke and a-ba-bek-e)
[10]. We also generated multiple variations for
morpheme segments that use round braces to de-
note optional segments. For instance, the word
iimpendulo ‘answers’ has the canonical segmen-
tation i-(z)im-pendulo in the dataset. For this
pair, we removed the use of round braces by
generating the following two pairs: (iimpendulo,
i-zim-pendulo) and (iimpendulo, i-im-pendulo).
The preprocessed data was fed to the algorithm
to extract 298 (isiZulu), 312 (isiXhosa), 308
(siSwati), and 279 (isiNdebele) unique phono-
logical conditioning rules. We sampled and
packaged 50 phonological conditioning rules,
together with their associated word and mor-
pheme segmentation, for each language. Af-
ter approval by the ethics committee, the data
was evaluated by a grammarian and they were
asked the following questions for each combina-
tion:

1. Is the word valid?
2. Is the morphological segmentation valid?
3. Does the morphological segmentation

match the word?
4. Is the phonological conditioning rule valid?

We then calculated the percentage of words,

morphemes, and rules that are judged to be
(in)valid. In the case where there are invalid
rules, we determined whether that is due to the
correctness of the word/segmentation or another
reason.

6 Results
The results of the expert evaluation are given in
Figure 3-6. The decision trees correspond to the
questions that the grammarian has to answer. For
the first/root cell, we have 50 words for which
the grammarian specified Yes/No/Uncertain to
the question Is the word valid?. The visualisa-
tion follows the same process for correctness of
the morphological segmentation, whether words
and morpheme segmentation match, and correct-
ness of the rule. We trace the top-most path
of Figure 4 to demonstrate how to interpret the
visualisation, the path shows that the grammar-
ian evaluated 50 words and specified that 2 of
them are invalid. For those 2 words, all their
corresponding morphological segmentations are
invalid and the words do not match the segmen-
tations. Lastly, each rule associated with each
segmentation and word pair is judged to be in-
valid.

For the 50 evaluated rules, 48% (isiZulu), 54%
(siSwati), 92% (isiXhosa), and 40% (isiNdebele)
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morph.
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match
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match (1) rule (1)

match (1) rule (1)

Y
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N
N

N
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N
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Figure 3: IsiZulu results. Green and red cells
denote valid and invalid rules (Y=Yes, N=No,
Morph Seg = Morphological segmentation)

word (50)

morph.
seg. (48)

match
(27)

rule (27)

match
(21)

rule (21)

morph.
seg. (2) match (2) rule (2)

Y

Y
Y

N
N

N

N N

Figure 4: siSwati results. Green and red cells
denote valid and invalid rules (Y=Yes, N=No,
Morph Seg = Morphological segmentation)

of the rules were judged to be correct. How-
ever, 100% of the rules are correct if the word
and morphemes are correct and they match – for
all languages.

7 Discussion
The results indicate that the algorithm extracts
valid phonological conditioning rules based on
the validity of the input. In isiZulu, it only
fails when the input is incorrect. For instance,
when the input is the word and morpheme
pair (soku-1, sa/u/ku/1). The word soku-1 is
judged to be invalid as it is a shorthand for
sokuqala ‘the first’. In siSwati, it fails when
the morpheme segmentation is invalid. For in-
stance, the segmentation of the word nebesil-
isa ‘of the male stock’ is na/be/si/lisa accord-
ing to the dataset even though the correct seg-
mentation is ne/be/isi/lisa. In addition, the mor-
pheme segmentation of tenkinga ‘problems’ is
ta/in/inkinga in the dataset instead of correct
ta/itiN/nkinga[11] hence the rule judged to be
invalid. In isiXhosa, the rules are only invalid
when the morpheme segmentation is invalid. For

word (50)
morph.

seg. (50) match
(46)

rule (46)

match (4) rule (4)

Y
Y

Y

N
N

Figure 5: IsiXhosa results. Green and red cells
denote valid and invalid rules (Y=Yes, N=No,
Morph Seg = Morphological segmentation)

word (50)
morph.

seg. (50)
match
(20)

rule (20)

match
(30)

rule (30)

Y
Y

Y

N
N

Figure 6: IsiNdebele results. Green and red cells
denote valid and invalid rules (Y=Yes, N=No,
Morph Seg = Morphological segmentation)

instance, the morphological segmentation of the
word kokuba in dataset is given as kwa/ukuba in-
stead of the correct segmentation ko/ku/ba. In
isiNdebele, it also only fails when morpholog-
ical segmentation is invalid. For instance, for
the word komsebenzi ‘of work’, the dataset has
the segmentation kwa/u/mu/sebenzi instead of
ka/umu/sebenz/i. Overall, this demonstrates that
there is a need to clean up existing morpheme
segmentation datasets in order to extract valid
phonological conditioning rules.

8 Conclusion
We have created the first algorithm for extract-
ing phonological conditioning rules from data.
Evaluation of the unique rules extracted by the
algorithm shows that all the extracted rules are
correct when the input is valid. We do not fore-
see any negative societal impacts brought on by
the algorithm.

Future work includes the use of dynamic pro-
gramming to speed up the extraction of the rules,
investigating the efficacy of neural models that
operate at the sub-word level and have access
to the extracted phonological conditioning rules
to generate text, creating a word/segmentation
ranking module that can be used to filter out in-
valid input.
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Notes
[1] https://openai.com/blog/chatgpt.

Accessed: 26 July 2023

[2] The process of converting the -b- to -tsh- in
this context is called palatalisation.

[3] The range of the score is 0-1 where the high-
est possible score is 1.

[4] https://github.com/DarkPr0digy/

MORPH_SEGMENT. Accessed: 24 July 2023

[5] https://lexically.net/

wordsmith/. Access date: 26 July
2023

[6] https://github.com/AdeebNqo/

NguniTextGeneration. Access date: 26
July 2023

[7] https://github.com/

GrammaticalFramework/gf-rgl/

tree/master/src/zulu

[8] The letters that have already been processed
are blue and the unprocessed are black and
bold.

[9] https://repo.sadilar.org/handle/

20.500.12185/546. Access date: 26
July 2023

[10] This is done to remove words that are
highly unlikely to have no phonological
conditioning

[11] Here, the N denotes the nasal which can
take the form -n- or -m-.
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