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Abstract

Part-of-speech tagging (POS tagging) is a process of
assigning labels to each word in text, to indicate its
lexical category based on the context it appears in.
The POS tagging problem is considered a mostly
solved problem in languages with a lot of NLP re-
sources such as English. However, this problem
is still an open problem for languages with fewer
NLP resources such as the Nguni languages. This
is owing to unavailability of large amounts of la-
belled data to train POS tagging models. The rich
morphological structure and the agglutinative na-
ture of these languages make the POS tagging prob-
lem more challenging when compared to a language
like English. With this in mind, we have organised
a challenge for training POS tagging models on a
limited amount of data for four Nguni languages:
isiZulu, Siswati, isiNdebele, and isiXhosa.
Keywords: Shared Task, Competition, Part-
of-Speech Tagging, Southern African Lan-
guages

1 Introduction
In this paper, we present the shared task and
combined results of NLAPOST2021, Nguni Lan-
guages Part-of-Speech Tagging, hosted jointly by
the Digital Humanities Association of Southern
Africa Conference (DHASA) [1] and the Southern
African Conference for Arti�cial Intelligence Re-
search (SACAIR) [2].
The objective of the shared task was to invite re-
searchers, students and other interested parties to
provide systems that can reliably predict part-of-
speech tags for isiNdebele, isiXhosa, isiZulu and
Siswati. The motivation behind the organization of
this shared task was three-fold: Firstly, we wanted to
invite young researchers and students to participate
in a Digital Humanities and Arti�cial Intelligence
related conference, where they could showcase their
expertise. Secondly, we wanted to utilize the newly
published CTexT POS dataset [3]. Thirdly, we
hoped our participants would achieve good results
with diverse machine learning systems.
This paper is structured as follows: Section 2 con-
tains a description of the data, Section 3 describes
the shared task, and related work is presented in
Section 4. The winning team’s submission is in-
troduced in Section 5, and the results are presented
in Section 6. The paper is concluded by Sec-
tion 7.

2 Data
The �rst shared task on Nguni Languages Part-of-
Speech Tagging (NLAPOST) covered four di�er-
ent African languages: isiNdebele, isiXhosa, isiZulu
and Siswati.
The data was provided to us by the Centre for
Text Technology at the North-West University
[4].
Each tab separated data �le consists of text to-
kens, morphological analysis, lemma, treebank-
speci�c part-of-speech (XPOS), and universal part-
of-speech (UPOS). As of date, the publication de-
scribing the part-of-speech annotated data is yet to
be published. Therefore, the authors have to refer
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to internal annotation protocols kindly provided to
us by CTexT (CTexT 2020, Pienaar 2021).
Table 1 shows the number of tokens per language
�le. An example of the data format provided to the
participants is shown in Table 2.
The shared task data consisted of columns for to-
ken, morphological analysis, and universal part-of-
speech. The original dataset was split into training
set (90 %) and test set (10 %) per language �le.

3 Shared Task
The participants were asked to predict part-of-
speech tags (UPOS) for all languages. They
were provided with morphological segmentation,
but not the full morphological analysis. The
NLAPOST2021 shared task was published on co-
dalab.com and announced on various mailing lists,
social media channels, and grassroots research net-
works, such as Masakhane [5]. Participants were
asked to register, after which they received the neces-
sary information from the organizers. After an ini-
tial phase, in which the registered participants only
had access to a small development set (two sentences
per language), the training data was released. In to-
tal, participants had eight weeks to use the training
data to develop their systems. Three weeks before
the end of the competition, the test data was pub-
lished.
Participants were free to make us of the morpho-
logical segmentation, but not required to do so.
Furthermore, uni�ed systems (one system for all
languages) or individual systems (one system per
language) were accepted. Participating teams were
asked to submit individual �les per language, con-
taining only the token and the predicted UPOS
tag.

Table 1: Size of Shared Task Dataset

Tokens
isiNdebele 51,120
isiXhosa 49,104
isiZulu 50,166
Siswati 50,528

Table 2: Example Annotation (Siswati)

TOKEN MORPH SEG UPOS
Ngetulu nga-tulu ADV
kwaloko kwa-loko POSS
, , PUNC
kuba ku-b-a V
khona khona CONJ
kuniketela ku-niket-el-a V
kwekwakhiwa kwe-ku-akh-iw-a POSS
kwemaKomidi kwe-ma-komidi POSS
emaWadi e-ma-wadi N

Out of a number of registered participants, despite
extension of the deadline for submitting systems,
only one team submitted results (the submission
presented in sections 5 and 6). However, the par-
ticipating team delivered encouraging results across
all four languages. Therefore, we invited the team
to collaborate on this paper [6].

4 Related Work
A number of POS taggers have been developed
over the years for poorly resourced agglutinative lan-
guages. The �rst reported work on POS tagging for
the four Bantu languages we use for our shared task
was done as part of a resource construction project
for ten of South Africa’s o�cial languages (Eiselen
& Puttkammer 2014). The open-source HunPOS
tagger (Halácsy et al. 2007) was used on data for
isiZulu, isiXhosa, isiNdebele, Siswati and achieved
an accuracy of 83.83 %, 84.18 %, 82.57 %, and 82.08 %
respectively.
Recently, Igbo, an agglutinative native language of
Nigeria has been the subject of an e�ort to develop
an e�ective POS tagger for the language (Onyenwe
et al. 2019). A tagset of 70 tags was used to tag a com-
bined corpus of 303 816 words. A wide range of POS
tagging methods are used as a baseline in this study:
unigram, ME, HMM, transformation-based learn-
ing and similarity-based learning. A rule-based al-
gorithm is developed, which takes advantage of rel-
atively accurate morphological analysis. Given the
complexity of the morphosyntax of Igbo, the au-
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thors were able to produce speci�c rules which ex-
ploit this linguistic knowledge to produce results
which are superior to the baseline models devel-
oped for a non-agglutinative language like English.
This rule-based approach produces accuracies rang-
ing from 82-100% on subsets of the aggregate cor-
pus.
Bengali is the most spoken language in Bangladesh
and the second most spoken language in India. Two
models were developed for this agglutinative lan-
guage, a hidden Markov model (HMM) and an
Maximum Entropy (ME) tagger (Dandapat et al.
2007). A tag set of 40 tags was used to annotate
3625 sentences, which amounted to approximately
40 000 words. Both the HMM and ME models also
integrated morphological information in their fea-
ture set, which signi�cantly improved the accuracy
of both models. In this study, it was the HMM su-
pervised model which performed best, achieving an
accuracy of 88.75%.
The HMM also performed well on another Indic
language, Assamese (Saharia et al. 2009). This na-
tional language of India is spoken by approximately
30 million people. In this case a tagset of 172 tags
was used to annotate a 10 000 word corpus for train-
ing and testing the corpus. Although no morpho-
logical information was used, the POS tagger was
able to achieve an accuracy of 85.64%. This �gure
is di�cult to put into context as the paper didn’t
report any results for other models on the same
dataset.
As popular as the HMM and ME models are for
POS tagging, other techniques have also been tried
on the task. Conditional Random Fields (CRFs),
Support Vector Machines (SVMs) and a rule-based
approach were compared on Kokborok POS tag-
ging (Patra et al. 2012). Kokborok is a language
spoken by approximately 2.5 million native Indi-
ans based in the northern region of the country. A
tagset of 26 tags was used to tag a corpus of 42 537
words. Morphological analysis was used to break
the words down into morphemes so that features
could be developed manually for the rule-based and
machine learning approaches. Of the three ap-

Table 3: The di�erent design choices we tried while
developing our system. Our submission to the shared
task is indicated in bold.

Component Option Label
Model Bi-LSTM lstm

Bi-LSTM + CRF crf
Features Characters char

Character 2-grams 2gram
Character 3-grams 3gram

Composition Sum sum
Bi-LSTM lstm

proaches, the SVM model performed best, achiev-
ing an accuracy of 84.46%

5 Methods
Our �nal submission to the shared task was a bidi-
rectional LSTM (bi-LSTM) with a conditional ran-
dom �eld (CRF) layer, using character 2-grams as
input features. We chose this system as our �nal
submission after experimenting with di�erent de-
sign choices, as listed in table 3. In this section we
present a baseline we initially developed to compare
our subsequent systems to. We then go through the
di�erent components of our own system, and ex-
plain how we arrived at our �nal system.

5.1 Baseline
Our baseline system is a hidden Markov model
(HMM) (Baum & Petrie 1966) using words as in-
put features. A HMM is a statistical model which
assumes that each observation in a sequence is pro-
duced by an unobserved hidden state. The hid-
den states follow a Markov process (the probabil-
ity distribution of each hidden state depends only
on the previous hidden state), and they in turn pro-
duce observations according emission probabilities
that only depend on the current hidden state.
For our POS tagging baseline, we model the words
in a sentence as the observed sequence x1, x2, ..., xn
and their parts of speech as the hidden states
z1, z2, ..., zn. Training a HMM requires learn-
ing transition probabilities p(zt|zt−1) and emission
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probabilities p(xt|zt). In our case we have a labelled
training set available, so we train our model by sim-
ply counting transitions and emissions, and nor-
malising them to obtain probabilities. To predict
the POS tags of an unlabelled test sentence, we run
the Viterbi algorithm, which computes the most
likely hidden sequence given an observed sequence.
It is a dynamic programming algorithm that com-
putes hidden state sequence probabilities in a for-
ward pass, and traces the most likely hidden state
sequence in a backward pass.

5.2 System components
In developing our system we were faced with a num-
ber of decisions, regarding which methods to use in
the components of our POS tagging system. Here
we discuss the options we tried for the neural model,
the input features, and word composition.

Neural models

Long short-term memory networks (LSTMs)
(Hochreiter & Schmidhuber 1997) are recurrent
neural networks for sequence modelling. At each
step in a sequence, they update an internal hidden
state vector through a number of learned gates
that act as �lters on the hidden state. The gates are
computed from the current input vector xt and the
previous hidden state ht−1 as

ft = σ(Wf xt + Ufht−1 + bf )
it = σ(Wixt + Uiht−1 + bi)
ot = σ(Woxt + Uoht−1 + bo)

where ft, it, ot are referred to as the forget, in-
put, and output gates respectively, and W,U, b are
learned parameters. Using these gates, the hidden
state ht is computed as

c̃t = tanh(Wcxt + Ucht−1 + bc)
ct = ft � ct−1 + it � c̃t
ht = ot � tanh(ct),

where ct is referred to as the current cell state. A
LSTM processes data sequentially in a single direc-
tion. A bi-LSTM is essentially two LSTMs com-
bined - one processing the sequence in the forward

direction and another processing it in a backward
direction. The two are combined by concatenating
the hidden states of the two LSTMs at each time
step, so the combined network encodes information
from both directions of the sequence. The hidden
states of a LSTM are usually passed to further neural
layers, that produce task speci�c output (POS tag
probabilities in our case).
Conditional random �elds (CRFs) (La�erty et al.
2001) are undirected probabilistic graphical mod-
els (PGMs) for sequence labelling. The main ad-
vantage they o�er over LSTMs is that they explic-
itly model dependencies between predicted out-
puts (LSTM predictions are conditionally indep-
dendent). Given an input sequence x and a la-
bel sequence y, a CRF models the conditional dis-
tribution p(y|x). It does so by computing scores
f (x, yi, yi+1) for each position in a sequence, where f
is a called the feature function. These scores are then
normalised to obtain the probability p(y|x), using a
dynamic programming algorithm for e�cient com-
putation. f is a often a parameterised combination
of handcrafted functions that encode rules for the
sequence labels (e.g. syntactic rules in the case of
POS tags), but it is also possible to model f as a fully
trainable function (e.g. a statistical model, or neural
network). As in the case of HMMs, the most likely
label sequence given an observed input sequence is
computed with the Viterbi algorithm.
We experimented with two neural models for our
POS tagging system - a bi-LSTM and a CRF with
a bi-LSTM as feature function. Our bi-LSTM
model produces concatenated hidden states for all
the words in a sentence. These hidden states are
then passed to a fully connected neural layer, which
produces probabilities for all possible POS tags. For
our CRF model, a bi-LSTM produces scores for
each position in a sentence (i.e. we parameterise the
feature function with a bi-LSTM). The scores are
taken as input by a CRF, which computes probabil-
ities for the tagged sentence. Both our models are
trained by maximising the probabilities of tagged
sentences in a training sets. For optimisation we use
the Adam optimiser (Kingma & Ba 2015), a popu-
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lar variant of stochastic gradient descent that adapts
learning rates on a per-parameter basis.

Input features

One of our earliest �ndings while developing our
system was that subword-based systems comfort-
ably outperformed word-based models. This is ex-
pected, because all the task languages are agglu-
tinative (words are formed by stringing together
morphemes), so subword information is crucial.
Furthermore, because the task datasets are rela-
tively small (compared to those of high-resource lan-
guages), any held-out dataset will contain many pre-
viously unseen words. Incorporating subword fea-
tures enables the system to handle new words, since
it can use subword information to infer word-level
properties.
We initially considered training a morphological
segmenter on the morphologically analysed data,
but decided against it. The task data contains
canonically segmented words (words are divided
into their standardised morphemes, as opposed to
their surface forms) and canonical segmentation is
a challenging task. Moeng et al. (2021) applied vari-
ous models to the task of supervised canonical seg-
mentation for the Nguni languages, and failed to ex-
ceed 0.75 F1 for any of the languages. Therefore we
reasoned that the e�ort of developing a supervised
canonical segmenter might not be worth the poten-
tial bene�t to the model.
Instead, we incorporated subword information
through two conceptually simple methods that
were easy to implement and experiment with. Our
�rst method simply segments words into their char-
acters - the word “kuba” is represented as the char-
acter sequence “k-u-b-a”. Our second method rep-
resents words as sequences of character n-grams.
In our experiments we found that 2-grams worked
well, and found no improvement in using higher or-
der n-grams. Here the word “kuba” is represented
as the 2-gram sequence “<k-ku-ub-ba-a>”, where <
and > are special symbols indicating the start and
end of words.

Word composition

The �nal component of our system concerns how
subword representations are composed to form
word representations. Since POS tagging is a word-
level task, we need some way to build word represen-
tations that can be processed as input by our neu-
ral networks. The method we settled on consists
of simply summing the subword vector represen-
tations for a word. This was shown by Zhu et al.
(2019) to be robust across di�erent languages, com-
pared to other composition functions. However,
it discards sequential and positional information,
modelling each word as a “bag-of-subwords”. We
also experimented with a bi-LSTM that processes
a word as a sequence of subword units, and pro-
duces a vector representation for the word. Ling
et al. (2015) showed that this improved performance
on POS tagging, especially for morphologically rich
languages. However, this signi�cantly increased the
training times of our models, and we observed no
performance improvement over sum-based compo-
sition. Therefore we converged on sum-based com-
position early in our experiments.

5.3 Experimental setup
In addition to the components discussed above, we
also employed various strategies that aid the train-
ing of deep learning models. We used a schedule for
the learning rate, which determines the gradient de-
scent step size in optimisation. We repeatedly de-
creased the learning rate by some factor according
to a speci�ed schedule. This ensures a high learn-
ing rate at the start of training and lower learning
rates as training progresses (since smaller optimisa-
tion steps are required in the vicinity of maxima).
We trained the model for a prede�ned number of
iterations (epochs) of the training set and processed
the data in batches made up of a prede�ned number
of sentences.
Furthermore, we employed two regularisation
strategies to combat over�tting - dropout and
weight decay. We used dropout in our neural
network layers, which randomly drops (zeroes
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Table 4: The hyperparameter values we used for
training our models.

Input embedding size 512
Hidden state size 512
LSTM layers 1
Initial learning rate 0.01
Adjustment schedule every 3 epochs
Shrinkage factor 0.5
Epochs 15
Batch size 64
Dropout rate 0.2
Weight decay 1e-5
Gradient clipping 1.0

out) some proportion of units in the computed
vector representations during training. Weight
decay regularises the model by penalising large
parameter values. We also applied gradient clipping
during training, which scales gradient values if they
exceed some speci�ed threshold. This prevents
excessively large gradients, which can be a problem
for LSTMs.
During development, we used cross-validation to
assess our systems and hyperparameters. This in-
volved training our systems on 90% of the training
set, and evaluating it on the remaining 10% (we did
not have access to the test set at all during devel-
opment). To ensure that our assessments were not
overly dependent on a particular train/validation
split, we performed multiple cross-validation exper-
iments per system, each time assessing performance
on a di�erent 90%-10% split. To assess a system,
we computed the macro-averaged F1 scores across
all POS tags on the validation set (and averaged this
over di�erent validation splits). We then compared
di�erent systems according to this metric, since this
is the evaluation metric used to evaluate submis-
sions on the shared task. We repeated this tuning
procedure across all the languages, but generally the
same optimal hyperparameter values emerged. The
hyperparameter values that we settled on through
this process are listed in table 4.

6 Results
Here we present the results obtained by our sys-
tems on the shared task test datasets, and discuss
our main �ndings. The results of the systems we
experimented with are summarised in table 5, and
we include a full breakdown of the performance of
our �nal submission (crf, char + sum) in the ap-
pendix. Overall our systems performed well, consis-
tently achieving accuracies and F1 scores above 0.85,
often surpassing 0.9, and even reaching 0.95 in the
case of isiXhosa.
All our systems comfortably outperform the base-
line. The combination of subword features and
sequential neural networks proves much more ef-
fective than the word-based HMM. Deep learn-
ing models sometimes perform poorly on small
datasets, but the results con�rm that the shared task
datasets are large enough for neural networks to
train e�ectively and learn generalisable rules.
Among our own systems, there are two that emerge
as the best performing systems across the board.
These are the CRF with 2-gram features and the
bi-LSTM with character features. It is not obvious
why these particular combinations of features and
neural models work well, but what is clear is that
the introduction of subword information proves
highly e�ective. Performance levels vary across the
languages, with all models (including the baseline)
achieving their highest scores on isiXhosa and low-
est scores on Siswati. This points to the existence
of language-speci�c characteristics that may con-
tribute to the relative di�culty of the task.

7 Conclusion
In this paper, we introduced the �rst shared
task on Nguni Languages Part-of-Speech Tagging
(NLAPOST). The dataset, which includes POS
tags for four African languages (isiNdebele, isiX-
hosa, isiZulu and Siswati), is publicly available
at https://repo.sadilar.org/handle/20.

500.12185/546.
We also presented the results of the submitting
team, which introduced an CRF classi�er and a bi-
LSTM system. Both systems performed well on

6



Proceedings of the International Conference of the Digital Humanities Association of Southern Africa 2021

Table 5: The results obtained on the shared task test sets by our systems. We report the F1 scores macro-averaged
over POS tags, and the test set accuracies.

isiNdebele isiXhosa isiZulu Siswati
Model Feature acc F1 acc F1 acc F1 acc F1
hmm word 0.75 0.58 0.77 0.60 0.76 0.58 0.72 0.54

crf char + sum 0.86 0.85 0.90 0.90 0.87 0.85 0.85 0.81
ngram + sum 0.90 0.88 0.95 0.94 0.91 0.86 0.90 0.84

lstm char + sum 0.91 0.87 0.95 0.94 0.92 0.87 0.90 0.84
ngram + sum 0.86 0.84 0.90 0.90 0.88 0.86 0.85 0.81

the test set, with the best results for isiXhosa (0.94
F1 score) and the lowest scores for Siswati (0.84 F1
score). These results are an encouraging contri-
bution to natural language processing for the lan-
guages in the dataset.
Although the participation in the shared task was
relatively low (despite a much higher number of reg-
istered teams), we consider the NLAPOST21 shared
task a success in the sense that �rstly, the winning
team presented encouraging results. Secondly, the
organization proved a successful collaboration be-
tween SACAIR and DHASA. Lastly, even though
only one team submitted results, the dataset was in-
troduced and made accessible to many early-carreer
researchers and interested scholars, who will hope-
fully engage with it further.

Notes
[1] https://dh2021.digitalhumanities.

org.za/

[2] https://2021.sacair.org.za/

[3] https://repo.sadilar.org/handle/

20.500.12185/546

[4] http://humanities.nwu.ac.za/CTexT

[5] https://www.masakhane.io/
[6] FP, EJ and SD organized the shared task, FM

delivered the system as the only participating
party.
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2-grams as input features.

8



Proceedings of the International Conference of the Digital Humanities Association of Southern Africa 2021

isiNdebele
precision recall F1 score support

ABBR 0.86 0.92 0.89 13
ADJ 0.98 0.88 0.93 106

ADV 0.95 0.96 0.95 693
CDEM 0.87 0.80 0.84 76
CONJ 0.93 0.95 0.94 176

COP 0.76 0.53 0.62 36
FOR 1.00 0.75 0.86 4

IDEO 1.00 0.80 0.89 10
INT 0.79 0.73 0.76 15

N 0.90 0.89 0.89 1375
NUM 0.89 1.00 0.94 8
POSS 0.91 0.92 0.91 769
PRO 0.93 0.94 0.94 71

PUNC 1.00 1.00 1.00 583
REL 0.83 0.85 0.84 444

V 0.80 0.81 0.81 647
accuracy 0.90 5026

macro avg 0.90 0.86 0.88 5026
weighted avg 0.90 0.90 0.90 5026

isiXhosa
precision recall F1 score support

ABBR 0.94 0.94 0.94 16
ADJ 0.87 0.93 0.90 82

ADV 0.94 0.98 0.96 613
CDEM 0.98 0.96 0.97 84
CONJ 0.99 0.98 0.99 195

COP 0.86 0.74 0.80 167
FOR 0.92 0.75 0.83 16

IDEO 1.00 0.89 0.94 9
INT 0.92 1.00 0.96 12

N 0.96 0.97 0.97 1097
NUM 1.00 1.00 1.00 11
POSS 0.96 0.95 0.95 756
PRO 0.94 0.98 0.96 48

PUNC 1.00 1.00 1.00 599
REL 0.93 0.91 0.92 430

V 0.95 0.95 0.95 775
accuracy 0.95 4910

macro avg 0.95 0.93 0.94 4910
weighted avg 0.95 0.95 0.95 4910

isiZulu
precision recall F1 score support

ABBR 1.00 0.75 0.86 8
ADJ 0.91 0.85 0.88 82

ADV 0.92 0.95 0.94 643
CDEM 0.92 0.91 0.92 107
CONJ 0.95 0.93 0.94 228

COP 0.73 0.62 0.67 65
FOR 0.67 0.67 0.67 9

IDEO 0.50 0.75 0.60 4
INT 0.82 0.75 0.78 12

N 0.89 0.91 0.90 1075
NUM 1.00 1.00 1.00 10
POSS 0.92 0.94 0.93 712
PRO 1.00 0.98 0.99 55

PUNC 1.00 1.00 1.00 590
REL 0.87 0.89 0.88 511

V 0.90 0.84 0.87 844
accuracy 0.91 4955

macro avg 0.87 0.86 0.86 4955
weighted avg 0.91 0.91 0.91 4955

Siswati
precision recall F1 score support

ABBR 0.88 0.64 0.74 11
ADJ 0.87 0.92 0.89 64

ADV 0.88 0.91 0.89 591
CDEM 0.82 0.68 0.74 78
CONJ 0.87 0.84 0.85 245

COP 0.72 0.57 0.64 49
FOR 1.00 0.20 0.33 10

IDEO 1.00 1.00 1.00 1
INT 0.84 0.73 0.78 22

N 0.90 0.90 0.90 1013
NUM 1.00 1.00 1.00 17
POSS 0.89 0.88 0.89 751
PRO 1.00 0.92 0.96 37

PUNC 1.00 1.00 1.00 605
REL 0.88 0.88 0.88 413

V 0.88 0.91 0.90 789
accuracy 0.90 4696

macro avg 0.90 0.81 0.84 4696
weighted avg 0.90 0.90 0.90 4696
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