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Abstract 

Morphological analysis involves investigating the 
syntactic class of  a word but can also extend to the 
decomposition and syntactic analysis of  its 
underlying morpheme composition. This is 
especially relevant to languages with an 
agglutinative writing system where multiple 
linguistic words are expressed as a single 
orthographic word. In this paper, we propose a 
memory-based approach to canonical 
segmentation using a windowing approach to 
recover the uncondensed morphemes that differ 
from the surface form of  a word. Additionally, we 
propose treating the syntactic labelling of  
morphemes as a sequence labelling task, similar to 
part of  speech tagging. This approach leverages 
the internal morpheme composition of  a word as 
local context in much the same way that the 
surrounding sentence of  word serves in the 
disambiguation of  its part-of-speech. Both tasks 
are modelled separately but performed 
sequentially by cascading the decomposed 
morphemes of  a word into the task of  syntactic 
labelling. When evaluated on four resource-scarce, 
conjunctively written Nguni languages, the 
proposed approach achieves an overall accuracy 
ranging between 82% and 92% which 
outperforms previously developed rule-based 
analysers for the same languages. 
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1 Introduction 

Access to quality linguistic resources is crucial to 
any research and development efforts in the field 
of  Natural Language Processing (NLP). 
Collecting and assembling such resources is 

generally expensive and time-consuming, 
especially in the case of  resource-scarce languages 
as is the case for ten of  the eleven official 
languages of  South Africa. To address this scarcity 
and promote research and development efforts in 
the area of  human language technology, the South 
African government has established several 
legislative frameworks that promote the use and 
advancement of  these languages and has funded 
various development projects over the last two 
decades. One such project was the National 
Centre for Human Language Technology’s Text 
project (Eiselen and Puttkammer 2014), that 
collected circa 50,000 tokens, annotated with part 
of  speech (POS), lemma and morphological 
analysis information for ten of  the official South 
African languages. POS taggers, lemmatisers and 
rule-based morphological decomposers were also 
developed. A follow-up project expanded on this 
work by developing an additional 50,000 
annotated tokens and improved technologies for 
four of  these languages, viz. isiNdebele (NR), 
Siswati (SS), isiXhosa (XH) and isiZulu (ZU). In 
this paper, we focus on the morphological 
analysers that were developed in the follow-up 
project. 

In the next section we provide a brief  overview of  
the project, followed by a description of  
morphological decomposition versus analysis. We 
then (section 4) present our two-tiered approach 
to morphological analysis and results (section 6). 
Conclusions and future work are discussed in 
section 7. 

2 Background 

The aim of  this project was to create corpora 
annotated with POS, lemma and morphological 
analysis information for four resource-scarce 
South African Nguni languages and to develop 
associated core technologies using these datasets. 
In this paper the focus is on the development of  
the morphological analysers. For a detailed 
description of  the development process followed 
during the annotation of  the data, see Gaustad & 
Puttkammer, 2021. A description of  the other 
core technologies can be found in Du Toit & 
Puttkammer, 2021. 

mailto:Jaco.duToit@nwu.ac.za
mailto:Martin.Puttkammer@nwu.ac.za


DHASA2021 

2 

South Africa is a linguistically diverse country with 
eleven official languages, nine of  which are 
Southern Bantu languages that follow either a 
conjunctive or disjunctive writing system. This 
study only focuses on the conjunctively written 
Nguni languages namely, isiNdebele, Siswati, 
isiXhosa, isiZulu. To illustrate the orthographic 
difference between these writing systems, Prinsloo 
& De Schryver (2002) use the example phrase “I 
love him/her”. The agglutinative nature of  isiZulu 
produces the phrase as a single word, ngiyamthanda, 
whereas it would be written disjunctively in Sepedi 
as four separate words, ke a mo rata. Although this 
study is restricted to the four South African Nguni 
languages, insights gained during development 
could also be to be applied to languages that share 
a similar morphology. 

3 Morphology 

Morphological features are an important aspect in 
developing language engineering technologies and 
applications such as machine translation and 
spelling error correction. Morphological features 
typically refer to either lexicalized (e.g. lemmas) 
and non-lexicalized features (e.g. gender, case, 
number). Most approaches that operate at word-
level annotate tokens with lexicalized features 
using either combined feature sets or by modelling 
individual features as separate tagging tasks.  

A combined feature set expresses multiple aspects 
as a single composition of  non-lexical tags (e.g. 
Noun+A3sg+Pnon+Nom). This allows for 
underlying relationships between different 
features to be modelled explicitly but it does result 
in a large target space that further increases 
sparsity for morphologically rich languages. On 
the other hand, modelling these features separately 
yields a smaller target space but constrains the 
capacity of  a model to learn any inter-feature 
dependencies which is crucial for our intended 
task. When operating at the morpheme-level, the 
functional role of  a morpheme in the Nguni 
languages is both influenced and constrained by its 
internal context. Two approaches that utilise 
morphological features are so called 
morphological decomposition where morphemes 
are identified, and morphological analysis, where 

tags are assigned to each morpheme based on its 
grammatical function. 

Morphological decomposition entails dividing a 
word into its constituent morphemes, the smallest 
meaning-bearing units of  a word (Ruokolainen et 
al. 2013). However, these morphemes may not be 
orthographically equal to the corresponding 
segment of  the word in written form when 
spelling transformations manifest during 
agglutination. We thus distinguish between two 
forms of  segmentation, surface segmentation and 
canonical segmentation. The former yields a set of  
substrings that concatenate to the original word 
from, whereas the latter yields a sequence of  
canonical morphemes that are true to the 
underlying forms of  the morphemes but 
potentially differ in their orthographic 
representation within the original wordform. 
Morphological decomposition is beneficial in 
helping to support further analyses for NLP tasks, 
especially in resource languages where data 
sparsity can undermine the quality of  a task. 

The set of  decomposers for conjunctive languages 
previously developed as part of  the NCHLT 
project were rule-based implementations that 
follow the work of  Bosch et al. (2006). These 
implementations entailed recursively identifying 
all affixes in a token whereafter the remaining 
constituent would be verified against a lexicon of  
roots and stems. Only in instances where a valid 
stem or root and a valid combination of  affixes 
were confirmed would the decomposition be 
deemed successful. These rule deductions were 
based on the collection of  50,000 annotated 
tokens developed as part of  that project. These 
and the newly developed decomposers split tokens 
into their constituent morphemes, including each 
constituent affix, roots in the case of  verbs, and 
stems in other parts of  speech. For example, the 
isiZulu word ukusebenzisa (“use”) is split into its 
constituent morphemes as u-ku-sebenz-is-a, where 
each affix boundary is marked in conjunction with 
the verb root. 

Morphological analysis is of  particular 
importance when applied to the Nguni languages 
since its words are naturally composed of  
aggregating morphemes that may undergo 
spelling alterations after their unions. These 
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languages follow a conjunctive writing system 
which leads to an agglutinative orthography where 
morphemes are written unseparated. Yet, the 
meaning of  a word is a function of  its 
morphemes, and it is therefore necessary to isolate 
these individual morphemes for further syntactic 
analysis. Full morphological analysis entails both 
the segmentation of  morphemes and the analysis 
of  the interactions among the underlying 
morphemes of  a word by determining their 
syntactic classes (Van den Bosch and Daelemans 
1999). For example, the same isiZulu word used in 
the previous example, ukusebenzisa (“use”), is 
morphologically decomposed and analyzed as 
u[NPrePre]-ku[BPre]-sebenz[VRoot]-
is[CausExt]-a[VerbTerm], where the syntactic 
class of  each morpheme is assigned. For this 
example, the syntactic classes consist of  a 
secondary noun prefix (NPrePre), a primary noun 
prefix (BPre), a verbal root (VRoot), a causative 
verbal suffix (CausExt), and a verb terminative 
(VerbTerm). 

4 Morphological Analyser Design 

This section describes the task of  modelling 
morphological analysis and the level of  granularity 
in analyses that existing solutions support. Our 
initial investigations into a suitable approach to 
morphological analysis included NLP pipelines 
that typically accommodate multiple tagging and 
morphological tasks, as in the case of  UDPipe1 
(Straka 2018) and MarMoT2 (Müller et al. 2013). 
MarMoT is a generic CRF framework capable of  
both POS tagging and morphological analysis, 
similarly UDPipe is a trainable pipeline for 
tokenization, POS tagging, dependency parsing, 
and morphological analysis that employs 
contextualized BERT embeddings. However, the 
capacity for morphological analysis in these 
solutions only accommodate non-lexicalised 
features that distinguish lexical and grammatical 
properties of  words. Attempts to adopt this 
system to annotate Nguni language tokens with 
syntactic morpheme classes were expectedly 
unsuccessful, since its capacity for morphological 
analysis is limited to only the word-level and 
context is derived from the encompassing 

 
1 https://ufal.mff.cuni.cz/udpipe/2 

sentence rather than the local composition of  
morphemes. 

Taking into account the required depth of  
morphological analysis and because canonical 
segmentation and class annotation at the 
morpheme level are not usually addressed as a 
single task, we approached morphological analysis 
as two separate problems. Both morpheme 
segmentation and morphological analysis are 
treated as a sequence tagging task, as was the 
approach followed by Sorokin & Kravtsova’s 
(2018) for Russian, a comparably agglutinative 
language.  

In their approach, morpheme segmentation was 
represented using the BMES labelling scheme 
where the classes account for beginning (B), 
middle (M), and ending (E) as well as single (S) 
single letter morphemes. Additionally, morphemes 
were tagged according to their type namely, root, 
prefix, suffix, ending, postfix, link, and hyphen. 
Thus, the task of  their system was to predict 
segmentation and type labels for a sequence of  
letters. However, morpheme classifications 
constitute a small target space of  only 7 labels 
thereby ensuring better prediction accuracy. 
Adopting the approach taken by Sorokin & 
Kravtsova (2018) to our task resulted in a low 
tagging accuracy given our larger target space and 
subsequent increased sparsity as our labelling 
scheme contains 71 tags for ZU, 70 for NR, 68 for 
SS and 62 tags for XH. 

The before-mentioned NLP pipelines and other 
approaches to morphological analysis typically 
model morphological features at the word-level 
and context representation spans the entirety of  
the encompassing sentence. In contrast, 
morpheme segmentation is modelled at the 
character-level and thus the difference in 
granularity explains why most approaches 
approach each task separately unless the target 
space can be kept relatively small as in the case of  
Sorokin & Kravtsova (2018). In contrast, Van den 
Bosch & Daelemans (1999) was however 
successful at jointly modelling morphological 
boundaries, syntactic classes, and spelling 
transformations at the character-level as a single 

2 http://cistern.cis.lmu.de/marmot/ 
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task which resulted in a large target space but was 
supported by a large dataset. This approach is 
compatible with our intended task but applying a 
similar method to our limited data sets would 
introduce sparsity and only diminish the quality of  
predictions. Nonetheless, inspiration was taken 
from Van den Bosch & Daelemans (1999) in 
reducing the task of  segmentation to a sequence 
of  classification tasks using a windowing method 
across the characters of  a word. To accomplish 
tagging each morpheme with its syntactic 
morphological class we opted to treat the task 
similar to that of  POS tagging and representing 
individual morphemes as words to realise local 
context from within the internal morpheme 
composition of  a word. This approach is 
discussed in greater detail in the next section. 

The proposed approach follows a two-tier design 
for sequential segmentation and analysis. Isolating 
the two tasks allowed for greater accuracy in 
segmentation, which suffered the most in prior 
attempts given the complexity of  the languages. A 
pipeline approach is subject to cascading errors, 
but the significant accuracy of  the morphological 
decomposer as the initial component in the 
pipeline does little to impact the overall accuracy. 

4.1 Tier 1: Morphological decomposition 

The first tier of  the approach is a memory-based 
learning system that models morphological 
decomposition and spelling transformations as a 
series of  classification tasks inspired by the work 
of  Van den Bosch and Daelemans (1999). 
Memory-based learning is a class of  supervised, 
inductive machine learning algorithms that learn 
based on examples of  a task stored in memory. 
The Tilburg Memory-Based Learner (TiMBL) 
facilitates this function as an open-source software 
package that supports a selection of  k-nearest 
neighbour classification and feature weighting 
algorithms (Daelemans et al. 2004). When new 
instances of  a learnt task are presented to the 
TiMBL model, computational effort is invested in 
finding the best-matching instances from memory 
as determined by a similarity metric. Once the 
nearest neighbour (or instance) is identified in 
memory, the associated class is transferred to the 
new instance. Memory-based approaches have 
been successfully applied to other natural language 

processing tasks such as hyphenation and 
compounding analysis (Pilon et al. 2008). 

Morphological decomposition can be treated as a 
context sensitive mapping problem, similar to 
most linguistic problems (e.g. source to target 
language translation, text to speech synthesis etc.). 
As part of  this approach, TiMBL is tasked with 
learning this particular mapping through a 
windowing method from the surface form of  a 
word to its canonical segmentation. Windowing in 
this manner transforms a word into multiple 
instances where each instance is focused on the 
boundary between letters, or the start and end 
boundary of  the word. The method is illustrated 
in table 1, where a sliding context window of  6 
letters traverses the length of  the word with the 
point of  focus positioned 3 letters left and right 
of  the given boundary. The instance class 
expresses whether the given boundary maps to a 
point of  segmentation in its decomposed form 
and if  any letters within its right 3 letter window 
should undergo a spelling transformation in 
obtaining its canonical segmentation. A window 
size of  6 letters was found to be sufficient for the 
task since most conversion-type transformation 
rules range between 1 and 3 characters. In the end, 
the canonical segmentation is obtained by 
constructing the surface form of  the word 
according to the predicted transformation rules.  

Table 1: Segmentation rules for the word ngokuphathelene 

Instance 
Number 

Left 
Context 

Point of 
Focus 

Right 
Context 

Rule 
Class 

1 - - -   n  g o = 
2 - - n   g  o k = 
3 - n g   o  k u = 
4 n g o   k  u p o>a*u* 
5 g o k   u  p h = 
6 o k u   p  h a * 
7 k u p   h  a t = 
8 u p h   a  t h = 
9 p h a   t  h e = 
10 h a t   h  e l = 
11 a t h   e  l e = 
12 t h e   l  e n = 
13 h e l   e  n e 0>an*il* 
14 e l e   n  e - = 
15 l e n   e  - - ne>0 
16 e n e   -  - - = 
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Per illustration of  the approach, Table 1 contains 
16 instances that were generated from the isiZulu 
word ngokuphathelene (“in relation to”) with their 
associated morphological transformation and 
segmentation classes that produce its canonical 
segmentation. The generated classes can express 
five different types of  transformations, the first is 
represented in instance 1 with the “=” class. This 
indicates that no transformation or segmentation 
takes place at the current point of  focus in the 
original surface form. These classes denote no 
difference between the surface form and the 
canonical segmentation for the right context at the 
point of  focus. The second type of  class is 
represented in instance 4 (o>a*u*) which is 
indicative of  a conversion transformation. These 
classes are assigned to the letter immediately left 
of  the point of  focus but can include letters from 
the right context when a transformation affects 
multiple letters like in instance 15 (ne>0). Any 
asterisks contained within the class represent 
segmentation points in the canonical form. 
Instance 6 (*) depicts an asterisk as an 
independent class which denotes a segmentation 
point in the canonical form of  the word at the 
current point of  focus. The fourth type of  
classification depicts the insertion of  characters at 
the given boundary as in instance 13 (0>an*il*) 
where the letters and segmentation points “an*il*” 
are to be inserted between the letters l and e. The 
fifth and last class denotes the removal of  letters 
like in the case of  instance 15 (ne>0) where the 
trailing letters “ne” are to be omitted in the 
canonical segmented wordform. 

The classes were derived using diminishing 
longest string matching between the surface and 
canonical forms to isolate the differences at 
character level. This yielded an instance base 
ranging between 447,605 (SS) and 481,153 (NR) 
that consist of  98 (NR), 122 (SS), 96 (XH), and 
124 (ZU) unique classes, but excluding exceptional 
classes with an occurrence frequency of  less than 
3. Across all four languages, the most frequent 
classes are (=) and (*), making up just over 50% 
of  all class instances in each language. 

In order to determine which learning algorithm 
best served the task of  canonical segmentation, 
TiMBL was trained on the generated instances 

using each of  the five k-nearest neighbour 
algorithms that it accommodates. A parameter 
search was used as part of  this experiment to 
determine which hyperparameter adjustments 
could provide the greatest prediction accuracy. 
Since the two-tier approach relies on the predicted 
segmentation, it was important to obtain a reliable 
morphological decomposition to ensure as few 
errors as possible that may hamper the second 
tier’s capacity to reliably annotate each morpheme 
with the related morphological analysis. In the 
end, IB2 was found to provide the greatest 
accuracy. IB2 operates similarly to other memory-
based learning algorithms by keeping instances in 
memory that contribute to the potential 
classification of  unseen instances during learning 
and uses a distance metric to determine class 
association. IB2 however employs an incremental 
editing strategy where its instance base is seeded 
with a certain (typically small) number of  
instances and only adds to instances in memory 
when it is misclassified by the k-NN classifier. The 
intention behind this approach is to construct an 
instance base that naturally establishes boundaries 
or key instances within memory with deviating or 
atypical instances to allow for greater 
generalisation. To further improve generalisation, 
each windowed instance was also associated with 
a seventh feature namely, the actual POS tag of  
the token. This improved the accuracy of  
predicted segmentation classes by around 1 to 2 
percentage points. 

4.2 Tier 2: Morphological Tagging  

The second tier of  the approach entails adopting 
a POS tagger to model syntactic morpheme 
classes of  canonically segmented tokens. The 
chosen candidate for this approach is MarMoT, 
(Müller et al. 2013) given its trainable NLP pipeline 
and its successful application as a POS tagger on 
the considered Nguni languages in Du Toit & 
Puttkammer, 2021. Because morphological classes 
are context dependent, treating the task of  
syntactic morphological tagging of  morphemes 
similar to that of  POS tagging helps to take 
advantage of  its capacity to learn predictions 
within the context of  a sentence. This is achieved 
by treating each segmented morpheme as a word 
and sequentially ordering them to resemble a 
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sentence, thereby realising the internal morpheme 
composition of  a word as local context in their 
tagging predictions.  

The segmented morphemes are provided to the 
tagger as words along with the actual POS tag of  
the word as an additional feature. This improved 
the quality of  its syntactic morphological class 
predictions by increasing the tagging accuracy by 
around 1 to 3 percentage points. 

5 Results 

The annotated data developed as part of  this 
project is divided according to an approximate 
90% training and 10% test split. Without including 
any punctuation, the following token counts make 
up each dataset split. 

Table 2: Token counts per language dataset 
 

NR SS XH ZU 
Train 39,251 37,223 37,926 38,489 
Test 4,441 4,084 4,277 4,345 
 
To evaluate the segmentation competency of  
TiMBL, the before-mentioned test sets were first 
transformed into windowed instances of  6 letters 
and segmentation rules were generated. Each 
instance was then associated with the 
transformation and segmentation rule as its 
intended classification. The instances also 
included the POS tag of  the token as a seventh, 
additional feature alongside its 6 windowed letters. 
Finally, the four trained TiMBL models were 
evaluated by presenting the windowed instances 
for classification. By comparing the class 
predictions to the intended segmentation rules, a 
prediction accuracy ranging between 96% and 
98% was achieved for each of  the language-
specific models. These results are listed in Table 3. 

Table 3: Segmentation and transformation rule class 
prediction accuracy 

 
NR SS XH ZU 

Accuracy (%) 97.02 96.92 98.30 96.55 
 
Similarly, to evaluate the syntactic morphological 
tagging competency of  MarMoT, the test set of  
tokens were segmented into their intended 
morphemes and associated morphological tags. 

The test sets were then presented to MarMoT for 
tagging along with the POS tag of  the token as 
additional feature. By comparing the predicted 
morphological tags to the intended tags, a 
prediction accuracy ranging between 91% and 
96% was achieved for each of  the language-
specific models. These results are listed in Table 4. 

Table 4: Prediction accuracy for syntactic morpheme 
tagging 

 
NR SS XH ZU 

Accuracy (%) 92.89 91.27 96.77 94.64 
 
Finally, the combined accuracy of  both tiers was 
evaluated by cascading the resulting canonical 
segmentation into MarMoT for syntactic 
morphological tagging. This was performed by 
applying the predicted transformation and 
segmentation rules in the first tier to the tokens in 
the test set to produce the canonically segmented 
morphemes. These morphemes were then tagged 
by MarMoT to obtain their syntactic 
morphological class. The results of  the first tier 
were evaluated by comparing the number of  
corresponding morphemes between the intended 
test set of  canonical segmentation and the 
predicted rule-based transformation of  the token. 
Similarly, the morphological tag and morpheme 
associations were evaluated by comparing the 
predicted morpheme and tag pairs to the intended 
test set pairings for each token. These results are 
listed in Table 5. 

Table 5: Canonical segmentation and morphological 
tagging prediction accuracy 

 
NR SS XH ZU 

Segmentation 86.71 84.94 94.13 86.87 
Tagging 83.63 80.61 92.27 83.46 
 

6 Conclusion 

To ensure the continued development of  human 
language technologies, it is important that 
resources be developed and distributed. We have 
described one such effort funded by the South 
African government for four resource-scarce 
Nguni languages. These resources are available as 
open-source modules from the SADiLaR resource 
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catalogue3 and can aid researchers and developers 
in improving and furthering the reach of  language 
technology. Furthermore, the approaches taken 
toward morphological analysis at the morpheme 
level of  agglutinative languages may also provide 
evidence for its viability and applicability to similar 
languages. The lexical resources provided as part 
of  this project will enable further improvements 
and alternative approaches in developing related 
language technologies. 

Acknowledgements 

This research was made possible with the support 
from the South African Centre for Digital 
Language Resources (SADiLaR). SADiLaR is a 
research infrastructure established by the 
Department of  Science and Innovation (DSI) of  
the South African government as part of  the 
South African Research Infrastructure Roadmap 
(SARIR). 

References 

Bosch, S, Jones, J, Pretorius, L & Anderson, W 
2006, ‘Resource development for South African 
Bantu languages: computational morphological 
analysers and machine-readable lexicons’ In 
Proceedings on the Workshop on Networking the 
Development of  Language Resources for African 
Languages at the 5th International Conference on 
Language Resources and Evaluation, pp. 38-43. 

Daelemans, W, Zavrel, J, Van Der Sloot, K & Van 
den Bosch, A 2004, TiMBL: Tilburg memory-
based learner, version 6.4: reference guide, 
Tilburg, Tilburg University. 

Du Toit, JS & Puttkammer, MJ 2021, Developing 
Core Technologies for Resource-scarce Nguni 
Languages. Manuscript submitted for publication. 

Eiselen, R & Puttkammer, MJ 2014, ‘Developing 
Text Resources for Ten South African Languages’, 
In Proceedings of  the 9th International Conference on 
Language Resources and Evaluation (LREC 2014), pp. 
3698-3703. 

Gaustad, T & Puttkammer, MJ 2021, Linguistically 
annotated dataset for four official South African 
languages with a conjunctive orthography: 

 
3 https://repo.sadilar.org/handle/20.500.12185/7 

isiNdebele, isiXhosa, isiZulu, and Siswati. 
Manuscript submitted for publication. 

Müller, T, Schmid, H & Schütze, H 2013, 
‘Efficient higher-order CRFs for morphological 
tagging.’ In Proceedings of  the 2013 Conference on 
Empirical Methods in Natural Language Processing, pp. 
322-332. 

Pilon, S, Puttkammer, MJ & Van Huyssteen, GB, 
2008. ‘Die ontwikkeling van 'n woordafbreker en 
kompositumanaliseerder vir Afrikaans’, Journal of  
Literary Criticism, Comparative Linguistics and Literary 
Studies, vol. 29 no. 1, pp. 21-41. 

Prinsloo, DJ & De Schryver, GM 2002, ‘Towards 
an 11 x 11 array for the degree of  
conjunctivism/disjunctivism of  the South African 
languages’, Nordic Journal of  African Studies, vol. 
11 no. 2, pp. 249-265. 

Ruokolainen, T, Kohonen, O, Virpioja, S & 
Kurimo, M 2013, ‘Supervised morphological 
segmentation in a low-resource learning setting 
using conditional random fields’ In Proceedings of  
the Seventeenth Conference on Computational Natural 
Language Learning, pp. 29-37. 

Sorokin, A & Kravtsova, A 2018, ‘Deep 
convolutional networks for supervised morpheme 
segmentation of  Russian language’ In Conference on 
Artificial Intelligence and Natural Language, pp. 3-10 

Straka, M 2018, ‘UDPipe 2.0 prototype at CoNLL 
2018 UD shared task’ In Proceedings of  the CoNLL 
2018 Shared Task: Multilingual Parsing from Raw Text 
to Universal Dependencies, pp. 197-207. 

Van den Bosch, A & Daelemans, A 1999, 
‘Memory-based morphological analysis’ In 
Proceedings of  the 37th annual meeting of  the association 
for computational Linguistics, pp. 285-292. 

Zalmout, N & Habash, N 2017, ‘Don’t throw 
those morphological analyzers away just yet: 
Neural morphological disambiguation for Arabic’ 
In Proceedings of  the 2017 Conference on Empirical 
Methods in Natural Language Processing, pp. 704-713. 


